首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Wu  J M Kaper  E M Jaspars 《FEBS letters》1991,292(1-2):213-216
An RNA-dependent RNA polymerase purified from tobacco infected with cucumber mosaic virus catalyzes the synthesis of (-) and (+) strands of the viral satellite RNA, CARNA 5, but fails to replicate the satellite RNA of peanut stunt virus (PSV). The enzyme replicates the genomic RNAs of the three principal cucumoviruses CMV, PSV and tomato aspermy virus (TAV) with varying efficiencies. The specificity with which CMV RdRp replicates different sequence-unrelated RNA templates suggests that the site of their recognition requires secondary or higher level structural organization.  相似文献   

2.
3.
Two isolates of cucumber mosaic virus (CMV)-associated satellite RNA, differing in their biological properties, have been reverse transcribed. One was able to induce the tomato necrotic syndrome whereas the other one attenuated fernleaf symptoms on tomato plants after co-inoculation with the helper virus. cDNAs representing partial or full-length copies have been cloned in the plasmid pAT 153 and sequenced. The two RNAs showed a very limited number of variations (2 to 5 substitutions depending on the clones and a one base deletion). Full-length cDNA copies possessed the same biological properties that characterized the parent satellite RNA. Efficiency of the cDNA depended upon its form in the inoculum (circular or linear plasmid or excised cDNA) and upon the form of the helper virus (viral RNAs or virions) with which it seemed to compete for installation and/or expression.  相似文献   

4.
《Seminars in Virology》1993,4(6):357-361
Transgenic tobacco plants (CP +) that express the coat protein gene of cucumber mosaic virus (CMV)-Y strain were highly protected from infection with either CMV virions or CMV RNA, while transgenic protoplasts were also protected from infection with CMV virions but not with CMV RNA. CP + plants showed greater susceptibility to infection with satellite RNA-free CMV-Y than CMV-Y containing satellite RNA. At temperatures above 30°C, CP + plants did not or poorly resist infection with CMV. Elevated temperature affected the accumulation of CP rather than its mRNA, suggesting that CP molecules are mainly involved in virus resistance in CP + plants.  相似文献   

5.
《Research in virology》1990,141(1):81-95
Cucumber mosaic virus (CMV), a widespread and economically important virus of vegetable crops, often contains a satellite RNA, here designated CARNA-5 (for CMV-associated RNA 5). Viral satellites are small nucleic acids that are sequence-unrelated to, but replicatively dependent upon, the viral genome. They essentially are molecular parasites of their helper viruses, and thereby frequently modulate viral symptom expression. Some isolates of CARNA-5 change normally moderate CMV symptoms in tomato into a lethal disease named tomato necrosis; others ameliorate CMV symptoms in tomato and other important crop plants. Here we report on the identification and molecular characterization of a 334-nucleotide necrogenic CARNA-5 isolated from tomato fields in southern Italy, where a massive outbreak of lethal necrosis occurred in the summer of 1988. This is the first time that direct evidence is given for the involvement of a viral satellite in a crop disease of epidemic scale. The possible molecular interrelationships between plant, virus, satellite and other factors that influence the satellite-induced symptom modulation underlying such a catastrophe are discussed.  相似文献   

6.
《Research in virology》1990,141(5):487-503
In tomato, the disease-modulating effects of a cucumber mosaic virus (CMV) satellite isolate from Belgium, here designated T-CARNA-5 (CARNA-5 = CMV-associated RNA-5), were found to be different depending on the supporting helper virus strain. With two CMV strains, T-CARNA-5 induced lethal necrosis, but with a third strain from Ixora spp. (CMV-Ix), aggravated stunting was observed. However, the primary structure of the T-CARNA-5 contained within virus isolated from tobacco or tomato infected with each of these three CMV strains, conformed to the conserved sequence profile of CARNA-5 isolates which are necrogenic in tomato. Dilution end-point bioassay of T-CARNA-5 established a direct cause-effect relationship between it and tomato necrosis or stunting, depending on the helper virus. Total nucleic acid extracts taken at different times from tomato plants infected with the above CMV strains and T- or S-CARNA-5 (used as non-necrogenic control) showed viral RNA, ssCARNA-5 and dsCARNA-5 to be present in significant amounts, but in sometimes dissimilar proportions depending on the combination; except in CMV-Ix/S-CARNA-5 infection where neither ss-nor dsCARNA-5 was found.The experiments established that CARNA-5 biological expression studies in CMV-infected tomato have to take into account the helper virus satellite replication support function, which may be a primary codeterminant of quantitative or qualitative differences in the symptom modulation observed.  相似文献   

7.
Zhu H  Duan CG  Hou WN  Du QS  Lv DQ  Fang RX  Guo HS 《Journal of virology》2011,85(24):13384-13397
RNA silencing provides protection against RNA viruses by targeting both the helper virus and its satellite RNA (satRNA). Virus-derived small interfering RNAs (vsiRNAs) bound with Argonaute (AGO) proteins are presumed participants in the silencing process. Here, we show that a vsiRNA targeted to virus RNAs triggers the host RNA-dependent RNA polymerase 6 (RDR6)-mediated degradation of viral RNAs. We confirmed that satRNA-derived small interfering RNAs (satsiRNAs) could be associated with different AGO proteins in planta. The most frequently cloned satsiRNA, satsiR-12, was predicted to imperfectly match to Cucumber mosaic virus (CMV) RNAs in the upstream area of the 3' untranslated region (3' UTR). Moreover, an artificial satsiR-12 (asatsiR-12) mediated cleavage of a green fluorescent protein (GFP) sensor construct harboring the satsiR-12 target site. asatsiR-12 also mediated reduction of viral RNAs in 2b-deficient CMV (CMVΔ2b)-infected Nicotiana benthamiana. The reduction was not observed in CMVΔ2b-infected RDR6i plants, in which RDR6 was silenced. Following infection with 2b-containing CMV, the reduction in viral RNAs was not observed in plants of either genotype, indicating that the asatsiR-12-mediated reduction of viral RNAs in the presence of RDR6 was inhibited by the 2b protein. Our results suggest that satsiR-12 targeting the 3' UTR of CMV RNAs triggered RDR6-dependent antiviral silencing. Competition experiments with wild-type CMV RNAs and anti-satsiR-12 mutant RNA1 in the presence of 2b and satRNA demonstrate the inhibitory effect of the 2b protein on the satsiR-12-related degradation of CMV RNAs, revealing a substantial suppressor function of the 2b protein in native CMV infection. Our data provide evidence for the important biological functions of satsiRNAs in homeostatic interactions among the host, virus, and satRNA in the final outcome of viral infection.  相似文献   

8.
Some RNA plant viruses contain satellite RNAs which are dependent upon their associated virus for replication and encapsidation. Some cucumber mosaic virus satellite RNAs induce chlorosis on any of several host plants, including either tobacco or tomato. The exchange of sequence domains between cDNA clones of chlorosis-inducing and non-pathogenic satellite RNAs delimited the chlorosis domain for both tobacco and tomato plants to the same region. Site-directed mutagenesis of one nucleotide (149) within this domain changed the host plant specificity for a chlorotic response to satellite RNA infection from tomato to tobacco. Within the chlorosis domain, three conserved nucleotides are either deleted or altered in all satellite RNAs that do not induce chlorosis. Deletion of one of these nucleotides (153) did not affect satellite RNA replication but rendered it non-pathogenic. Thus, two single nucleotides have been identified which play central roles in those interactions between the virus, its satellite RNA and the host plant, and together result in a specific disease state.  相似文献   

9.
《Seminars in Virology》1993,4(6):363-368
The mechanism of satellite RNA (Sat-RNA) mediated attenuation of virus disease was suggested to be the result of competition between satellite RNAs and their helper viral RNAs for replication. Subcellular distribution of viral coat protein in cucumber mosaic virus (CMV) infected leaf tissues shows that the presence of Sat-RNAs interferes with the movement of CMV coat protein into chloroplants. As a strategy for controlling virus diseases, the expression of Sat-RNAs in transgenic plants confers some extent of resistance that may not be strong enough to protect the plants from natural virus infections. Transgenic plants expressing both the Sat-RNA and the coat protein of CMV exhibit enhanced resistance to the virus.  相似文献   

10.
Conditions were established for the introduction of both tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) RNAs into tobacco mesophyll protoplasts by electroporation. The proportion of infected protoplasts was quantified by staining with viral coat protein-specific antibodies conjugated to fluorescein isothiocyanate. Approximately 30–40% of the protoplasts survived electroporation. Under optimal conditions, up to 75% of these were infected with TMV-RNA. Successful infection was demonstrated in 19 out of 20 experiments. Optimal infection was achieved with several direct current pulses of 90 sec at a field strength of 5 to 10 kV/cm. Changing the position of the protoplasts within the chamber between electric pulses was essential for achievement of high rates of infection. Optimal viral RNA concentration was about 10 g/ml in a solution of 0.5 M mannitol without buffer salts.  相似文献   

11.
Sat-RNA is one of several replicating satellite RNAs which have been isolated from RNA encapsidated in cucumber mosaic virus (CMV) and which are totally dependent on CMV for replication. The 336 residue sequence of Sat-RNA obtained using the dideoxynucleotide chain termination and partial enzymic digestion procedures shows only a few short stretches (up to 11 residues) of sequence homology with one of the three CMV genomal RNAs so far sequenced. Sat-RNA has 88% sequence homology with another, previously sequenced, satellite RNA of CMV, CARNA 5. Analysis of partial digests of 5'- or 3' -32P-Sat-RNA with nuclease S1 or RNase T1 under non-denaturing conditions showed that only about 10% of the residues in Sat-RNA were cleaved. Further data on base-paired segments of Sat-RNA were obtained using digestion with RNase T1 followed by electrophoretic fractionation of the resulting fragments under both non-denaturing and denaturing conditions. On the basis of this data, a complete secondary structure model is proposed for Sat-RNA with 52% of its residues involved in base pairs. A prominent hairpin at the 3'-terminus of Sat-RNA shows considerable sequence and structural homology with parts of the 3'-terminal tRNA-like structure of the CMV genomal RNAs.  相似文献   

12.
Tomato (Lycopersicon esculentum cvs Rutgers and Lichun) plants were firstly pre-inoculated either with a cucumber mosaic virus (CMV) isolate containing satellite RNA (CMV-S52) or with a CMV isolate without satellite RNA, and then challenged 14 days later with a severe strain of potato spindle tuber viroid (PSTVd). Also, tomato plants transformed with CMV satellite cDNA and non-transgenic control plants were directly inoculated with PSTVd. Protection effects were assessed by the observation of symptoms and by assay of PSTVd accumulation in tomato plants using return polyacrylamide gel electrophoresis and silver staining. The results indicated that the satellite-transgenic plants and plants pre-inoculated with CMV-S52 showed much milder symptoms of PSTVd infection than the respective control plants. The concentration of PSTVd RNA in the satellite-transgenic plants and CMV-S52 pre-inoculated plants was reduced to about 0.02–0.03 of the controls. PSTVd infection did not increase the amount of satellite ds-RNA in plants. It is concluded that the plant resistance to PSTVd is induced by the presence of satellite RNA rather than the CMV infection. It is suggested that as there is considerable sequence similarity between satellite RNA and PSTVd, base pairings may be a cause of reduction of both symptoms and the accumulation of PSTVd.  相似文献   

13.
The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.  相似文献   

14.
Mixed infection with the SON41 strain of Potato virus Y (PVY-SON41) in tomato increased accumulation of RNAs of strains Fny and LS of Cucumber mosaic virus (CMV-Fny and CMV-LS, respectively) and enhanced disease symptoms. By contrast, replication of PVY-SON41 was downregulated by CMV-Fny and this was due to the CMV-Fny 2b protein. The CMV-FnyΔ2b mutant was unable to systemically invade the tomato plant because its movement was blocked at the bundle sheath of the phloem. The function needed for invading the phloem was complemented by PVY-SON41 in plants grown at 22°C whereas this complementation was not necessary in plants grown at 15°C. Mutations in the 2b protein coding sequence of CMV-Fny as well as inhibition of translation of the 2a/2b overlapping region of the 2a protein lessened both the accumulation of viral RNAs and the severity of symptoms. Both of these functions were complemented by PVY-SON41. Infection of CMV-Fny supporting replication of the Tfn-satellite RNA reduced the accumulation of CMV RNA and suppressed symptom expression also in plants mixed-infected with PVY-SON41. The interaction between CMV and PVY-SON41 in tomato exhibited different features from that documented in other hosts. The results of this work are relevant from an ecological and epidemiological perspective due to the frequency of natural mixed infection of CMV and PVY in tomato.  相似文献   

15.
Tomato (Lycopersicon esculentum cvs Rutgers and Lichun) plants were firstly pre-inoculated either with a cucumber mosaic virus (CMV) isolate containing satellite RNA (CMV-S52) or with a CMV isolate without satellite RNA, and then challenged 14 days later with a severe strain of potato spindle tuber viroid (PSTVd). Also, tomato plants transformed with CMV satellite cDNA and non-transgenic control plants were directly inoculated with PSTVd. Protection effects were assessed by the observation of symptoms and by assay of PSTVd accumulation in tomato plants using return polyacrylamide gel electrophoresis and silver staining. The results indicated that the satellite-transgenic plants and plants pre-inoculated with CMV-S52 showed much milder symptoms of PSTVd infection than the respective control plants. The concentration of PSTVd RNA in the satellite-transgenic plants and CMV-S52 pre-inoculated plants was reduced to about 0.02-0.03 of the controls. PSTVd infection did not increase the amount of satellite ds-RNA in plants. It is concluded that the plant resistance to PSTVd is induced by the presence of satellite RNA rather than the CMV infection. It is suggested that as there is considerable sequence similarity between satellite RNA and PSTVd, base pairings may be a cause of reduction of both symptoms and the accumulation of PSTVd.  相似文献   

16.
17.
两株黄瓜花叶病毒卫星RNA的竞争与共存研究   总被引:1,自引:0,他引:1  
金波  陈集双 《微生物学报》2005,45(2):209-212
通过体外转录方法 ,将大小分别为 36 9nt和 385nt的 2个黄瓜花叶病毒 (Cucumbermosaicvirus,CMV)的卫星RNAYi和Yns共同与不含卫星的辅助病毒株CMV_CNa进行假重组 ,接种CMV系统寄主心叶烟。结果表明 :在接种5d的接种叶上同时检测到卫星RNA_Yi和卫星RNA_Yns;在系统叶上 ,接种 5d和 10d亦可同时检测到 2株卫星 ;但接种 15d ,在系统叶组织中只检测到卫星RNA_Yi。再将接种 5d的接种叶扩大接种到几种不同的指示植物后 ,经dsRNA抽提 ,也只获得 1条与卫星RNA_Yi大小相符的条带。通过假重组病毒株中分别获得卫星RNA并测序 ,确定2个卫星RNA的序列没有变化。卫星RNA_Yns和Yi在辅助病毒CMV_CNa作用下 ,表现出明显的竞争性 ,它们在辅助病毒中不能形成稳定的共存关系。  相似文献   

18.
Cucumber mosaic virus (CMV) is a tripartite RNA virus that can support the replication of satellite RNAs, small molecular parasites of the virus. Satellite RNAs can have a dramatic effect on the helper virus and the host plant in a manner specific to the helper, satellite, and host. Previously, we showed that the Sny-CMV strain is not able to support the replication of the WL1 satellite RNA in zucchini squash and that this phenotype maps to RNA 1. In the present study, we use recombinant cDNA clones of Fny- and Sny-CMV RNA 1 and a site-directed mutant of Fny-CMV RNA 1 to demonstrate that the inability to support WL1 satellite RNA maps to a single amino acid at residue 978 in the 1a protein, proximal to the helicase domain VI. Support of satellite RNA in whole plants and in protoplasts of zucchini squash is analyzed.  相似文献   

19.
Tomato plants transformed with a single copy of a tomato necrosis causing satellite RNA of cucumber mosaic virus (CMV) express the satellite sequence, but the plants show no disease symptoms and have a normal appearance. Upon challenge infection of the F1 progeny with a CMV strain free of any detectable encapsidated satellite the plants accumulated single and double-stranded forms of satellite RNA and developed lethal necrosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号