首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

2.
SUMMARY. 1. Life cycles, food habits, mouthpart morphologies, prey preferences, and predator-prey size relationships were investigated for the three most common stoneflies in leaf packs in the Little Missouri River, Arkansas: Clioperla clio (Newman), Isoperla namata Prison, and Perlesta spp. Each species was univoltine and had a fast seasonal cycle, with extended egg or nymphal diapause, rapid nymphal growth and emergence in spring to early summer.
2. Foregut analysis showed predictable dietary shifts by C. clio and Perlesta spp., from detritus and diatoms in early instars to invertebrate prey in later instars. Isoperla namata fed facultatively on insects, detritus and diatoms, with no conspicuous ontogenetic shifts. The mouthparts of all three species strongly reflected their diet.
3. Electivity analysis indicated opportunistic feeding by the three species, with feeding rarely differing significantly from random.
4. Sizes of stonefly predators and their ingested prey were highly correlated ( P <0.01). However, rather than shifting toward larger prey sizes, growing predators expanded their size thresholds and continued to include numerous small prey items in their diet. Prey choice was governed most directly by prey availability, because stoneflies selected the most abundant groups, irrespective of size or taxon.
5. The likelihood of competition among the three stoneflies for prey was minimized by timing of their life cycles, differential food use and probably the temporary nature of leaf pack habitats.  相似文献   

3.
Summary The searching and handling behaviors ofHarmonia axyridis larvae to the colony ofRhopalosiphum padi were experimentally examined and the processes of their aggregation to the prey colony was analyzed. All the instar larvae searched for the prey at random and they have no preference to the prey colony, but except the 1st instar they tend to aggregate to the plants with prey colonies. The 1st instar larvae tend to stay on the plants they once located. The 2nd to 4th instar larvae often emigrate from the plants without prey colony but seldom emigrate from the plants with prey colonies, and consequently, they aggregate to the plants with prey colonies. The expense of time to eat prey (in the 2nd and 3rd instars) and the change of searching behavior for the prey after feeding (in the 3rd and 4th instars) are responsible for the larval concentration to prey colony as a trapping effect for predators to prey colony.  相似文献   

4.
A central issue in predator–prey interactions is how predator associated chemical cues affect the behaviour and life history of prey. In this study, we investigated how growth and behaviour during ontogeny of a damselfly larva (Coenagrion hastulatum) in high and low food environments was affected by the diet of a predator (Aeshna juncea). We reared larvae in three different predator treatments; no predator, predator feeding on conspecifics and predator feeding on heterospecifics. We found that, independent of food availability, larvae displayed the strongest anti-predator behaviours where predators consumed prey conspecifics. Interestingly, the effect of predator diet on prey activity was only present early in ontogeny, whereas late in ontogeny no difference in prey activity between treatments could be found. In contrast, the significant effect of predator diet on prey spatial distribution was unaffected by time. Larval size was affected by both food availability and predator diet. Larvae reared in the high food treatment grew larger than larvae in the low food treatment. Mean larval size was smallest in the treatment where predators consumed prey conspecifics, intermediate where predators consumed heterospecifics and largest in the treatment without predators. The difference in mean larval size between treatments is probably an effect of reduced larval feeding, due to behavioural responses to chemical cues associated with predator diet. Our study suggests that anti-predator responses can be specific for certain stages in ontogeny. This finding shows the importance of considering where in its ontogeny a study organism is before results are interpreted and generalisations are made. Furthermore, this finding accentuates the importance of long-term studies and may have implications for how results generated by short-term studies can be used.  相似文献   

5.
SUMMARY.
  • 1 The foraging movements of late instar Ischnura elegans larvae were monitored in laboratory experiments to study the effects of predators on larval feeding behaviour.
  • 2 Ischnura larvae are sit-atid-wait, or ambush, foragers, moving occasionally between perches in search of profitable feeding sites. Larval foraging movements, monitored at different densities of Daphnia prey, increased significantly when prey were absent.
  • 3 In experiments without prey, larval movement was inhibited by the presence of fish predators, as well as by invertebrate predators (Notonecta glauca), but not by closely related, non-predatory invertebrates (Corixa punctata) or physical disturbance of the water (intermittent air bubbles).
  • 4 Further experiments varied Ischnura hunger levels (0–8 days without food) and illumination (light or dark) with and without notonectid predators. Hunger had no consistent effect on penultimate instar behaviour but final instar foraging activity was significantly modified: movements increased after 4 days starvation and decreased again after 8 days. This response was suppressed by the presence of predators. Both larval instars moved significantly less often in the light, even when predators were absent.
  • 5 These phenotypically flexible predator-avoidance responses are likely to decrease the risk of predation by both visual and tactile predators. However, predators clearly have an important influence on the feeding niche of Ischnura larvae, and may decrease the overall feeding efficiency, growth rate, and survival of larvae by constraining their movement in search of profitable feeding sites.
  相似文献   

6.
Laboratory studies were conducted to determine the effect of different artificial diets made of powdered seed materials of chickpea ( Cicer arietinum ), soybean ( Glycine max ), and maize ( Zea mays ) on the growth, consumption, and feeding preferences of Helicoverpa armigera larvae. Food consumption and growth of ultimate instar gram pod borer larvae were minimal on maize diet. The nutritive value of the soybean diet was higher, but the consumption rate of larvae was highest on chickpea diet compared with the other test diets. The growth of larvae was statistically equal on chickpea and soybean diets, in spite of differences in the consumption rate of these diets and their nutritive value. There appears to be a direct correlation between the quantity of the diets consumed and their nutritive value for growth of the larvae on chickpea and soybean diets. The lower nutritive value of chickpea diet is correlated with its higher intake by the larvae. Similarly, the lower consumption rate of larvae on soybean diet is correlated with its higher nutritive value. The diet on which the larvae were fed during earlier instars did not induce any feeding preference for that particular diet in the ultimate larval instar. The larvae consumed similar quantities of each of the three diets in their ultimate instar, irrespective of having fed on any of these diets during any preceding instars. However, induction in the quantitative consumption of food by the larvae was evident. The higher or lower consumption rate of diet by the larvae in the ultimate instar was influenced by their food during earlier instars. Hence the food consumption rate of larvae in the last instar appears to be set while feeding on a diet in the preceding instars.  相似文献   

7.
Growth and survival through the early larval phase probably limit the production potential of many commercially important fish stocks. Attempts to increase the production of these stocks by restocking of juveniles have generally failed. Here, we analyse how enhanced concentrations of phytoplankton and zooplankton affect the survival of fish larvae during their early life stages. The analysis is developed for larvae feeding on copepod eggs and nauplii, with fish and invertebrates as major predators. A model of feeding and growth of fish larvae is applied to assess the benefit of enhanced phytoplankton and zooplankton abundance. The analysis shows that the shading effect of higher phytoplankton concentration may reduce predation rates on fish larvae substantially. This `top-down' effect may be more important for the cohort survivorship than the `bottom-up' mechanism in situations when larval food is sufficiently abundant. However, while increased algal biomass will improve recruitment at high zooplankton concentration, it may also reduce recruitment at low zooplankton concentrations and shallow mixing depths. Both the larvae and their vertebrate predators are dependent on light to detect their prey, and the longer reactive distance of the predators make them more susceptible than the larvae to reduced light levels and increased turbidity. We discuss the implications of reduced predation and increased zooplankton abundance on recruitment and production of fish larvae, and point at environmental conditions where changing algal biomass is likely to affect recruitment success.  相似文献   

8.
1. Predator-mediated coexistence occurs when predation allows competitors to coexist, due to preferential consumption of a superior competitor relative to an inferior competitor. Differences between the native treehole mosquito ( Aedes triseriatus ) and the co-occurring Asian tiger mosquito ( Aedes albopictus ) in anti-predatory larval behaviours account, in part, for the greater vulnerability of this invasive species to native predatory midge ( Corethrella appendiculata ). We test the hypothesis that stage-dependent differences in the sizes of A. albopictus and A. triseriatus larvae, relative to the size-limited C. appendiculata , contribute to differential consumption and the likelihood of predator-mediated coexistence of these competitors.
2. In all instars, larvae of A. triseriatus were larger than A. albopictus of the same stage. Third and fourth instar C. appendiculata selectively consumed late-stage A. albopictus in preference to same-stage A. triseriatus . Small, early-stage prey larvae did not differ in vulnerability to predation, but large, late-stage larvae differed significantly in vulnerability to predation, probably owing to size-limited predation by fourth instar C. appendiculata. This effect was less pronounced for third instar C. appendiculata .
3. Prey size, in conjunction with anti-predatory behavioural responses, alters the probability of predator-mediated coexistence. A stage-structured predation model showed that equally vulnerable early stages reduce the range of environmental conditions (productivities) in which predator-mediated coexistence is possible, increasing the likelihood of both competitive exclusion of the resident species or failure of the invasive to establish. These results underscore the importance of stage-dependent interspecific differences in predator–prey interactions for determining how predators may affect community composition.  相似文献   

9.
Abstract. 1. Predaceous insects may benefit from feeding on non‐prey foods, such as pollen, nectar, and honeydew, because they can provide nutrients that help maintain metabolism and enhance overall nutrient intake. Yet, the extent to which predaceous insects can assimilate non‐prey food and the importance of diet mixing during particular life history stages is poorly understood. In this study the relative contribution of an omnivorous diet to the growth and survivorship of a predaceous larva was tested in a hypothetical situation in which nutritionally optimal prey was not available. The study system comprised a predaceous larva (second‐ and third‐instar larvae of the green lacewing Chrysoperla carnea), nutritionally poor prey (larvae of Drosophila melanogaster), and non‐prey food (pollen suspension, a mixture of bee pollen and artificial nectar (1 M sucrose solution)). Chrysoperla carnea larvae in the mixed diet treatment were provided with both Drosophila larvae and pollen suspension, while those reared on the prey and non‐prey diet treatments received only Drosophila larvae or pollen suspension respectively. 2. The inclusion of pollen and sucrose in their diet enhanced the growth of C. carnea larvae. Second instars reared on the mixed diet developed significantly faster than their cohorts reared on the prey diet, however third instars reared on the mixed diet did not develop faster than their cohorts reared on the prey diet. Larvae reared on the mixed diet became larger adults than did those reared on either the prey or non‐prey diets. Third instars reared on the non‐prey diet completed their development while second instars in the non‐prey diet treatment failed to pupate. 3. Stable isotope analysis indicated that the larvae obtained most of their carbon (55–73%) and nitrogen (71–73%) from Drosophila but acquired only a minor amount of carbon (2–5%) and nitrogen (3–11%) from pollen. Larvae reared on the mixed and non‐prey diets acquired a relatively significant amount of carbon (23–51%) from sucrose. 4. A model, which included a novel fractionation factor to account for the isotopic effect of metamorphosis, was developed to explain the proportion of larval growth attributable to each diet item. It explained the adult δ13C values to within 0.2‰ and adult δ15N values to within 0.7‰ in all treatments. 5. Adults fed 15N‐labelled pollen as larvae retained the 15N signal of the pollen as adults. 6. The collective results of this study support the view that, despite their dependence on prey arthropods to obtain most of their dietary nitrogen, omnivorous lacewing larvae can enhance their growth and development by supplementing their diets with alternative non‐prey food resources. This finding is consistent with the notion that omnivory has evolved as a feeding strategy to acquire both additional nitrogen as well as trace nutrients.  相似文献   

10.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

11.
SUMMARY. 1. In an investigation of perch use by two species of larval damselfies, Coenagrion puella (Linn.) and Ischnura elegans (van der Linden), larvae spaced out on a grid of vertical cocktail sticks, in the absence of food, to a greater extent than expected from a random model. Spacing was the result of direct interaction between larvae, and was not related to the level of hunger of the larvae over a 10 day starvation period.
2. Prior ownership of a perch was not a predictor of success in conflicts between larvae of the same instar. In contests between different instars larger larvae were more likely to win conflicts. Some small larvae appear to remain undetected in the presence of larger conspecifies.
3. At one level of food availability, perch ownership did not influence growth rate or mortality of C. puella or I. etegans. However, it did allow greater prey capture success rate.
4. Coenagrion puella larvae showed more movement in the absence of perches both in terms of actual distance moved and amount of swimming activity. The amount of swimming activity was reduced by addition of a predator (sticklebacks. Gasterosteus aculeatus or Pungitius pungitius) to the tank both in the absence and presence of an alternative food supply for the fish. Duration of individual swimming bouts was unaffected.
5. Sticklebacks attacked C. puella larvae significantly more often in the absence of perches, with a strong bias towards swimming larvae.
6. It is proposed that the major advantage of perch possession to C. puella larvae is in the reduction of predation as a consequence of the reduction in larval movement.  相似文献   

12.
The day‐night vertical distribution, diel feeding activity and diet of fourth instar of Chaoborus larvae were analyzed in lacustrine zone of a neotropical reservoir which shows seasonally contrasting hypolimnetic oxygen conditions. Larvae stayed in sediment and water bottom during day and ascended to surface during night. Results indicate that feeding activity is limited mainly to the plankton population. Phytoplankton, rotifers or remains of Chaoborus larvae were not found in crops. With the exception of ostracods, all crustacean prey available in the zooplankton occurred in the guts. Ceriodaphnia cornuta and Moina micrura were the most frequent food items (about 75% of occurrence frequency) and were positively selected. The remainder crustacean zooplankton taxa were negatively selected by larvae. The most intense feeding activity in larvae occurred near midnight and sunrise, in dates when the hypolimnion was anoxic. When oxygen was available on the bottom, a higher and not changing diel feeding activity was detected. Our results indicate that vertical migration may promote a spatial separation between larvae and zooplankton, and feeding activity of larvae occurred only when both overlapped. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
1. Females of Chlosyne lacinia (Geyer) (Lepidoptera: Nymphalidae, Melitaenae), the bordered patch butterfly, clump eggs in a few large clusters on their host plant, Helianthus annuus. Resulting larvae form sibling aggregations to at least the third instar.
2. The effect of group size on survival and development of C. lacinia larvae was tested experimentally in the field. Larvae developed faster and survived better in larger groups.
3. The effects of various predator guilds (ground-dwelling arthropods, aerial arthropods and avian predators) on survival of larvae was then tested while controlling group size. Ground-dwelling arthropods, mainly fire ants Solenopsis xyloni , reduced larval survival greatly but other solitary invertebrate and avian predators did not alter survival. Group defences and aposematism of C. lacinia larvae are probably ineffective against predatory ants that attack en masse and recruit other colony members.
4. In laboratory experiments, two possible mechanisms underlying faster development of larvae in larger groups were tested: (i) overcoming the physical toughness of host plant leaves, and (ii) social stimulus to feed. Results support the physical toughness hypothesis but not the social stimulus hypothesis.
5. Feeding in large groups by C. lacinia larvae confers multiple advantages, including protection from solitary predators and increased feeding efficiency because grouped, early-instar larvae can initiate feeding wounds on tough sunflower leaves. These advantages of larval gregariousness, coupled with reduced desiccation at the egg stage, apparently outweigh disadvantages of aggregation, such as interference and exploitative competition among larvae.  相似文献   

14.
1. Functional responses of predatory Toxorhynchites moctezuma (Dyar & Knab) larvae feeding on Aedes aegypti (L.) larvae (Diptera: Culicidae) were found to be type II of Holling (1959) and Rogers (1972). 2. Estimates of searching rate were generally higher for later instar predators. The search rate of second instar predators declined as prey instar increased, but fourth instar Tx. moctezuma had the highest search rate for second instar Ae. aegypti. 3. Prey handling times were higher for early instar predators and late instar prey. 4. When presented with mixtures of two instars of Ae. aegypti, second instar Tx. moctezuma showed frequency independent selectivity for the early instars, whereas fourth instar predators showed frequency independent selectivity for the late instars of Ae. aegypti. There was no evidence of frequency dependent predation. Preferences appeared to be transitive. 5. Extended random predator equations, using parameters derived from the functional responses, did not adequately describe the outcome of predation in the prey mixture experiment, even when the possibility of optimal switching behaviour was accounted for.  相似文献   

15.
Effects of prey density, prey instar, and patch size on the development of the predatory mosquito larva, Toxorhynchites towadensis, were investigated in the laboratory. Survivors of T. towadensis showed different developmental patterns in relation to prey age structure. All predatory larvae in containers with only second instar prey developed into the third instar. However, in several containers with fourth instar prey, mortality of predators was observed. During the third instar, no predatory larva died, but both prey density and prey instar significantly affected the survival of predators during their fourth instar. Large prey size promoted large predator adults, and predatory larvae which grew up in small surface containers responded by developing to large sizes than those in large containers. Larval developmental time of the predators differed in each treatment. During first and second instars, faster predator development was observed in containers with small surface areas and containing young prey individuals. However, when development was enhanced by the presence of old prey individuals, no surface effect was observed. The fastest predator development was observed with prey of mixed instars and high density. This study suggests that a small surface container containing prey of mixed instars and high density is suitable for development of predators.  相似文献   

16.
1. Data on the distributions of pelagic and benthic Chaoborus flavicans larvae were gathered in 1994 and tested for their agreement with the predator avoidance hypotheses. The development of all Chaoborus life stages, as well as the horizontal and vertical distribution in the four larval instars, was followed from May until October. We expected the largest larvae to dwell deeper by day, thus avoiding predation by visually foraging fish.
2. In agreement with this prediction body size increased with daytime depth, and this was true both between and within instars. The migration amplitude consequently increased with larval instar.
3. There was also evidence for horizontal migration, mainly in the third but also in the fourth instar.
4. Along a horizontal transect with increasing depth, locations with many benthic larvae had fewer pelagic larvae. Oxygen concentration was a good predictor of maximum benthic larval depth for most of the season but failed to predict their distribution in autumn.  相似文献   

17.
1. Three predatory chironomid species constituted numerically 8.8% (± 95% CL 2.2) of the macro- and meiobenthic community at the sediment surface and in the hyporheic zone of Oberer Seebach, a gravel stream in Lower Austria. Larvae of Thienemannimyia geijskesi (Goetghebuer) and Nilotanypus dubius (Meigen) occurred in higher densities in sediment depths between 10 and 40 cm, whereas Conchapelopia pallidula (Meigen) achieved higher densities at the sediment surface. The three species completed one generation in a year. 2. A total of ninety-seven prey species and instars were identified by gut analyses, of which forty-one benthic rotifer species constituted 69.5% of individuals and twenty-three chironomid species and their instars, 22.9%. The three tanypod species showed shifts from mainly rotifer species in early instars to chironomids and diverse other meio- and macrofaunal taxa in later instars. Rather than shifting towards larger prey sizes, growing predators expanded their upper size thresholds and continued to include smaller prey species in their diet. The extent to which tanypod instars fed on similar prey size classes declined with increasing larval size. Predation by tanypods amounted to 2.2% (± 95% CL 0.1) of the combined prey densities and prey consumption averaged 1.32 (bootstrap 95% CL 1.26–1.39) individuals per predator individual. 3. Preferences for microhabitat flow differed between predator species and in the prey assemblage. Prey densities and densities of T. geijskesi and C. pallidula were highest in pool areas, whereas N. dubius achieved high densities in riffle sites. 4. Tanypod larvae fed non-selectively among prey types. To test the significance of observed size(instar)-specific spatial and dietary overlap values amongst tanypod species, simulations were generated from random models for pairs of intra- and interspecific associations of individuals and groups of prey and predator species. Groups and individuals of tanypod instars fed near randomly on groups of prey types and a high proportion (P > 0.60) of prey individuals are quasi-randomly chosen by tanypods in those patches. Tanypod instar-pairs did not show a sustained trophic resource partitioning in time, thus reducing the degree of competitive interactions for food in this predator guild. Spatially segregated and non-segregated tanypod instars formed random aggregations independent of each other at different flow microhabitats. 5. Species-rich prey assemblages such as benthic rotifers and larval chironomids increased the probability of non-selective feeding upon a wide spectrum of prey species by tanypods. Prey choice was governed by prey availability and tanypod individuals fed on many species at rather even proportions independent of each other.  相似文献   

18.
Abstract. 1. A laboratory competition experiment is described in which the growth and development rates of larvae of the damselfly Ischnura elegans (Lind.) were measured over an entire instar.
2. Two larval instars which commonly occur together in the field were used in the experiment; they were maintained with a superabundance of prey and either larvae from the same or the larger/smaller instar.
3. Small larvae suffered increased development times and decreased size increases at the moult in the presence of large larvae but similar interference effects were not evident when these smaller larvae were in the presence of other small larvae.
4. Development time and size increases of large larvae were not significantly affected by the presence of small larvae.
5. Irrespective of the instar combinations investigated, interference effects were reduced when there were more perches available, although in only a few cases was this reduction significant.
6. The consequences of the asymmetric competition reported in the experiment for the study of lifetime reproductive success in damselflies are discussed. Late emerging adults may incur reduced reproductive success.  相似文献   

19.
The stomach contents were examined in 373 walleye pollack larvae of different sizes. The diet of pollack larvae included more than 20 plankters of different sizes. Phytoplankton was the major food source of 4- to 6-mm-long larvae. The proportion of phytoplankton in the larval diet decreased as the larvae grew, and the late larval stages shifted entirely to a diet of zooplankton. As the larvae increased in size, the spectrum of food organisms changed from smaller to larger sizes. In the larvae 4 to 31 mm long, the length of prey varied from 0.1 (Coscinodiscus) to 6.0 mm (Neocalanus plumchrus). The average daily repleteness of pollack larvae varied from 32 to 210. The minimum repleteness was registered in 4- to 6-mm-long larvae with mixed feeding (endogenous and exogenous); in 30- to 35-mm-long fish the repleteness was the greatest. The daily food rations calculated for the most abundant size groups of larvae ranged from 4.3 to 6.6% of their body weight.  相似文献   

20.
Regulation of host diapause by an insect parasitoid   总被引:1,自引:0,他引:1  
Abstract. 1. The interaction between larval development and parasitism by the braconid wasp Cotesia koebelei (Riley), was investigated in a population of the butterfly Euphydryas editha (Boisduval) (Nymphalidae). In this population, the butterfly host has an obligatory overwintering larval diapause.
2. It was found that E. editha larvae harbouring parasitoids were more likely to pass through an extra feeding instar before entering diapause than were non-parasitized conspecifics.
3. In addition, some individuals that were experimentally exposed to multiple parasitoid attacks bypassed diapause completely; these larvae passed through five or six feeding instars, reaching sizes typical of final instar post-diapause larvae.
4. The observed effect of superparasitism occurred regardless of whether the host larvae subsequently produced mature parasitoids, suggesting that parasitoid attack is sufficient to invoke the response.
5. It is proposed that the parasitoid C.koebelei regulates the number of pre-diapause feeding instars of its insect host E. editha, and that some component of the female venom, injected at oviposition, is responsible for this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号