首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Heterogeneity of high density lipoprotein generated by ABCA1 and ABCA7   总被引:2,自引:0,他引:2  
The assembly of HDL by helical apolipoprotein and cellular lipid was studied using HEK293 cells to which ecdysone-inducible human ABCA1 or human ABCA7 was transfected. Expression of both ABCA1 and ABCA7 was induced linearly proportional to ponasterone A concentration in the medium. In the experimental conditions used, the ABC protein expression levels limited the rate of lipid release when the apolipoprotein concentration was high, and the apolipoprotein concentration was rate-limiting when the ABC protein expression levels were high. When ABCA1 expression increased in conditions in which it was rate-limiting, relative cholesterol content to phospholipid increased in the HDL produced. In contrast, it was constant when ABCA7 expression increased. To investigate the background mechanism, the HDL particles were analyzed by density gradient ultracentrifugation and high performance lipid chromatography. The ABCA1-mediated reaction produced two distinct HDLs, large cholesterol-rich and small cholesterol-poor particles, and the ABCA7-mediated reaction generated mostly small cholesterol-poor particles. The increase of HDL assembly with the increase of ABCA1 expression was predominant in large cholesterol-rich particles, whereas only small cholesterol-poor HDL increased as ABCA7 expression increased. We conclude that ABCA1 generates cholesterol-rich and cholesterol-poor HDL and that the former is more prominently dependent on the increase of ABCA1 expression. ABCA7 produces this HDL subfraction only as a very minor component.  相似文献   

4.
Previous studies indicate that free cholesterol moves passively between high density lipoprotein (HDL) and cell plasma membranes by uncatalyzed diffusion of cholesterol molecules in the extracellular aqueous phase. By this mechanism, the rate constants for free cholesterol influx (Cli) and efflux (ke) should not be very sensitive to the free cholesterol content of cells or HDL. Thus, at a given HDL concentration, the unidirectional influx and efflux of cholesterol mass (Fi, Fe) should be proportional to the cholesterol content of HDL and cells, respectively, and net efflux of cholesterol mass (Fe-Fi greater than 0) should occur when either cells are enriched with cholesterol or HDL is depleted of cholesterol. We have examined the influence of cell and HDL free cholesterol contents on the bidirectional flux of free cholesterol between HDL and human fibroblasts and also attempted to detect some dependence of flux on the binding of HDL to the cells. In the range of HDL concentrations from 1 to 1000 micrograms of protein/ml, ke for cell free cholesterol approximately doubled for every 10-fold increase in HDL concentration, reaching 0.04 h-1 at 1000 micrograms of HDL/ml. ke and Cli were not influenced by the doubling of fibroblast free cholesterol content (from 31 +/- 5 to 62 +/- 13 micrograms of cholesterol/mg of protein). There was an approximate exchange of cholesterol between HDL and the unenriched fibroblasts (e.g. at [HDL] = 100 micrograms/ml, Fe and Fi = 3.2 and 3.0 micrograms of cholesterol/[4 h.mg of cell protein], respectively). In contrast, there was substantial net efflux from the enriched cells (at [HDL] = 100 micrograms/ml, Fe and Fi = 5.5 and 3.1 micrograms of cholesterol/[4 h.mg of cell protein], respectively). The rate constants for cholesterol flux were not influenced by changing the free cholesterol content of HDL, so that there was net efflux of cell cholesterol in the presence of cholesterol-depleted HDL and net influx from cholesterol-rich HDL. The Kd of HDL binding to fibroblasts was reduced from 1.7 to 0.9 micrograms/ml by the enrichment of the cells with free cholesterol; this increase in affinity for HDL was not reflected in enhanced rate constants for cholesterol flux. The inhibition of specific HDL binding by treatment of the lipoprotein with dimethyl suberimidate did not affect cholesterol flux using either control or cholesterol-rich cells at any HDL concentration in the range 1-1000 micrograms/ml. The above results are consistent with the concept that net movement of free cholesterol between cells and HDL occurs by passive, mass-action effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
High density lipoprotein (HDL) is assembled by interaction of apolipoprotein A-I with human monocytic leukemia cell line THP-1 by removing cellular cholesterol and phospholipid. Although the HDL formed with undifferentiated THP-1 cells contained only phosphatidylcholine and almost no cholesterol, the cells differentiated with phorbol 12-myristate 13-acetate (PMA) generated HDL enriched in cholesterol. The extent of cholesterol enrichment related to the cellular cholesterol level in the differentiated cells, but only weakly in the undifferentiated cells. In contrast, the differentiation had no influence on the diffusion-mediated cellular cholesterol efflux. The undifferentiated cells expressed the messages of ATP-binding cassette transporter 1 and caveolin-1, at low levels, and the PMA-induced differentiation resulted in substantial expression of both messages. Caveolin-1 protein expression was also highly induced by the PMA treatment of THP-1 cells. When the cells were treated with the antisense DNA of caveolin-1 and differentiated, both caveolin-1 synthesis and cholesterol incorporation into the HDL were reduced in parallel to generate the cholesterol-poor HDL.We concluded that caveolin-1 is involved in enrichment with cholesterol of the HDL generated by the apolipoprotein-cell interaction. This function is independent of the assembly of HDL particles with cellular phospholipid and of nonspecific, diffusion-mediated efflux of cellular cholesterol.  相似文献   

6.
Recent studies of Tangier disease have shown that the ATP-binding cassette transporter A1 (ABCA1)/apolipoprotein A-I (apoA-I) interaction is critical for high density lipoprotein particle formation, apoA-I integrity, and proper reverse cholesterol transport. However, the specifics of this interaction are unknown. It has been suggested that amphipathic helices of apoA-I bind to a lipid domain created by the ABCA1 transporter. Alternatively, apoA-I may bind directly to ABCA1 itself. To better understand this interaction, we created several truncation mutants of apoA-I and then followed up with more specific point mutants and helix translocation mutants to identify and characterize the locations of apoA-I required for ABCA1-mediated cholesterol efflux. We found that deletion of residues 221-243 (helix 10) abolished ABCA1-mediated cholesterol efflux from cultured RAW mouse macrophages treated with 8-bromo-cAMP. Point mutations in helix 10 that affected the helical charge distribution reduced ABCA1-mediated cholesterol efflux versus the wild type. We noted a strong positive correlation between cholesterol efflux and the lipid binding characteristics of apoA-I when mutations were made in helix 10. However, there was no such correlation for helix translocations in other areas of the protein as long as helix 10 remained intact at the C terminus. From these observations, we propose an alternative model for apolipoprotein-mediated efflux.  相似文献   

7.
The interactions of high density lipoprotein (HDL) and acetylated high density lipoprotein (acetyl-HDL) with isolated rat sinusoidal liver cells have been investigated. Cellular binding of 125I-acetyl-HDL at 0 degrees C demonstrated the presence of a specific, saturable membrane-associated receptor. This receptor was affected neither by formaldehyde-treated albumin nor by low density lipoprotein modified either by acetylation or malondialdehyde, ligands known to undergo receptor-mediated endocytosis by the cells, indicating that the receptor for acetyl-HDL constitutes a distinct class among the scavenger receptors for chemically modified proteins. Parallel binding experiments using 125I-HDL also revealed the presence on these cells of a receptor for unmodified HDL. The ligand specificities of these two receptors were similar to each other except that the acetyl-HDL receptor was sensitive to polyanions such as dextran sulfate and fucoidin. Interaction of HDL with the cells at 37 degrees C was totally different from that of acetyl-HDL. Cellular binding of HDL was not accompanied by subsequent intracellular degradation of its apoprotein moiety, whereas its cholesterol moiety was significantly transferred to the cells. In contrast, acetyl-HDL was endocytosed and underwent lysosomal degradation as a holoparticle. This shift in receptor-recognition from the HDL receptor to the acetyl-HDL receptor was accomplished by acetylation of approximately 8% of the total lysine residues of HDL apoprotein. This unique difference in endocytic behavior between HDL and acetyl-HDL suggests a potential link of the HDL receptor to HDL-mediated cholesterol transfer in sinusoidal liver cells.  相似文献   

8.
OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than 0.05). CONCLUSION--Over 12 years the lipid profile deteriorated significantly in this healthy cohort of young men. Smoking, a low high density lipoprotein concentration and a raised low density lipoprotein concentration were all associated with coronary heart disease in middle aged Scottish men, whereas there was no association for total cholesterol concentration. The findings have implications for screening programmes.  相似文献   

9.
10.
Serum amyloid A (SAA) is an amphiphilic helical protein that is found associated with plasma HDL in various pathological conditions, such as acute or chronic inflammation. Cellular lipid release and generation of HDL by this protein were investigated, in comparison with the reactions by apolipoprotein A-I (apoA-I) and several types of cells that appear with various specific profiles of cholesterol and phospholipid release. SAA mediated cellular lipid release from these cells with the same profile as apoA-I. Upregulation of cellular ABCA1 protein by liver X receptor/retinoid X receptor agonists resulted in an increase of cellular lipid release by apoA-I and SAA. SAA reacted with the HEK293-derived clones that stably express human ABCA1 (293/2c) or ABCA7 (293/6c) to generate cholesterol-containing HDL in a similar manner to apoA-I. Dibutyryl cyclic AMP and phorbol 12-myristate 13-acetate, which differentiate apoA-I-mediated cellular lipid release between 293/2c and 293/6c, also exhibited the same differential effects on the SAA-mediated reactions. No evidence was found for the ABCA1/ABCA7-independent lipid release by SAA. Characterization of physicochemical properties of the HDL revealed that SAA-generated HDL particles had higher density, larger diameter, and slower electrophoretic mobility than those generated by apoA-I. These results demonstrate that SAA generates cholesterol-containing HDL directly with cellular lipid and that the reaction is mediated by ABCA1 and ABCA7.  相似文献   

11.
Apo-A-1, the principal apoprotein of high density lipoprotein, was incubated with cholesterol containing liposomes of dimyristoyl lecithin, lecithin from high density lipoprotein or sphingomyelin. Conditions were chosen to give 100% conversion of cholesterol-free liposomes into recombinants which were isolated by density gradient ultracentrifugation. For all phospholipids, there was a progressive decrease in incorporation of lipid into recombinants with increasing cholesterol/phospholipid ratio. The cholesterol/phospholipid ratio of recombinants was ~ 45% of unreacted liposomes, for all initial cholesterol/phospholipid ratios. The reduced cholesterol content suggests exclusion of cholesterol from a fraction of recombinant phospholipid, probably a boundary layer in contact with apo A-1.  相似文献   

12.
Probucol has been shown to inhibit the release of cellular lipid by helical apolipoprotein and thereby to reduce plasma high density lipoprotein. We attempted to explore the underlying mechanism for this effect in human fibroblast WI-38. Probucol inhibited the apoA-I-mediated cellular lipid release and binding of apoA-I to the cells in a dose-dependent manner. It did not influence cellular uptake of low density lipoprotein, transport of cholesterol to the cell surface whether de novo synthesized or delivered as low density lipoprotein, and overall cellular content of cholesterol, although biosynthesis of lipids from acetate was somewhat increased. Probucol did not affect the mRNA level of ABCA1, and ABCA1 was recovered along with marker proteins for plasma membrane regardless of the presence of probucol. However, the protein level of ABCA1 increased, and the rate of its decay in the presence of cycloheximide was slower in the probucol-treated cells. ABCA1 in the probucol-treated cells was resistant to digestion by calpain but not by trypsin. We concluded that probucol inactivates ABCA1 in the plasma membrane with respect to its function in mediating binding of and lipid release by apolipoprotein and with respect to proteolytic degradation by calpain.  相似文献   

13.
Helical apolipoprotein(apo)s generate pre-beta-high density lipoprotein (HDL) by removing cellular cholesterol and phospholipid upon the interaction with cells. To investigate its physiological relevance, we studied the effect of an in vitro inhibitor of this reaction, probucol, in mice on the cell-apo interaction and plasma HDL levels. Plasma HDL severely dropped in a few days with probucol-containing chow while low density protein decreased more mildly over a few weeks. The peritoneal macrophages were assayed for apoA-I binding, apoA-I-mediated release of cellular cholesterol and phospholipid and the reduction by apoA-I of the ACAT-available intracellular cholesterol pool. All of these parameters were strongly suppressed in the probucol-fed mice. In contrast, the mRNA levels of the potential regulatory proteins of the HDL level such as apoA-I, apoE, LCAT, PLTP, SRB1 and ABC1 did not change with probucol. The fractional clearance rate of plasma HDL-cholesteryl ester was uninfluenced by probucol, but that of the HDL-apoprotein was slightly increased. No measurable CETP activity was detected either in the control or probucol-fed mice plasma. The change in these functional parameters is consistent with that observed in the Tangier disease patients. We thus concluded that generation of HDL by apo-cell interaction is a major source of plasma HDL in mice.  相似文献   

14.
Human high density lipoprotein (HDL3) was reconstituted with the free cholesterol molecules replaced with 4-[13C]-cholesterol. 90 MHz [13C]-NMR spectra were obtained and two cholesterol resonances at chemical shifts of 41.73 and 42.20 ppm could be resolved. The former signal arises from the C-4 atom of cholesterol molecules associated with phospholipids and located in the surface of the HDL3 particle while the latter resonance is due to cholesterol molecules associated with cholesterol ester and triglyceride molecules in the core. HDL3 reconstituted without any cholesterol ester or triglyceride gave a single resonance at 41.73 ppm indicating that all the free cholesterol molecules are in the surface. 60% of the free cholesterol molecules present in normal HDL3 are in the phospholipid monolayer around the surface where they undergo relatively restricted motion compared to the remaining 40% situated in the liquid core. The free cholesterol molecules can equilibrate between the two pools in the timescale 10ms–700s.  相似文献   

15.
In this study, free cholesterol (FC) efflux mediated by human HDL was investigated using fluorescence methodologies. The accessibility of FC to HDL may depend on whether it is located in regions rich in unsaturated phospholipids or in domains containing high levels of FC and sphingomyelin, known as "lipid rafts." Laurdan generalized polarization and two-photon microscopy were used to quantify FC removal from different pools in the bilayer of giant unilamellar vesicles (GUVs). GUVs made of POPC and FC were observed after incubation with reconstituted particles containing apolipoprotein A-I and POPC [78A diameter reconstituted high density lipoprotein (rHDL)]. Fluorescence correlation spectroscopy data show an increase in rHDL size during the incubation period. GUVs made of two "raft-like" mixtures [DOPC/DPPC/FC (1:1:1) and POPC/SPM/FC (6:1:1)] were used to model liquid-ordered/liquid-disordered phase coexistence. Through these experiments, we conclude that rHDL preferentially removes cholesterol from the more fluid phases. These data, and their extrapolation to in vivo systems, show the significant role that phase separation plays in the regulation of cholesterol homeostasis.  相似文献   

16.
Male squirrel monkeys fed ethanol at variable doses were used to assess whether alcohol enhances de novo synthesis of high density lipoprotein (HDL) cholesterol in vivo. Monkeys were divided into three groups: 1) Controls fed isocaloric liquid diet; 2) Low Ethanol monkeys fed liquid diet with vodka substituted isocalorically for carbohydrate at 12% of calories; and 3) High Ethanol animals fed diet plus vodka at 24% of calories. High Ethanol primates had significantly higher levels of HDL nonesterified cholesterol than Control and Low Ethanol animals while serum glutamate oxaloacetate transaminase was similar for the three treatments. There were no significant differences between the groups in HDL cholesteryl ester mass or specific activity following intravenous injection of labeled mevalonolactone. By contrast, High Ethanol monkeys had significantly greater HDL nonesterified cholesterol specific activity with approximately 60% of the radioactivity distributed in the HDL3 subfraction. This report provides the first experimental evidence that ethanol at 24% of calories induces elevations in HDL cholesterol in primates through enhanced de novo synthesis without adverse effects on liver function.  相似文献   

17.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

18.
Further studies have been made of the effects of high density lipoprotein (HDL) on the surface binding, internalization and degradation of 125I-labeled low density lipoprotein (125I-labeled LDL) by cultured normal human fibroblasts. In agreement with earlier studies, during short incubations HDL inhibited the surface binding of 125I-labeled LDL. In contrast, following prolonged incubations 125I-labeled LDL binding was consistently greater in the presence of HDL. The increment in 125I-labeled LDL binding induced by HDL was: (a) associated with a decrease in cell cholesterol content; (b) inhibited by the addition of cholesterol or cycloheximide to the incubation medium; and (c) accompanied by similar increments in 125I-labeled LDL internalization and degradation. It is concluded that HDL induces the synthesis of high affinity LDL receptors in human fibroblasts by promoting the efflux of cholesterol from the cells.  相似文献   

19.
Genetic effects on serum high density lipoprotein (HDL) cholesterol concentration and several parameters of a two-pool model of cholesterol metabolism were investigated in 79 baboons, the progeny of 6 sires. Significant differences (P less than 0.05) were observed among the sire progeny groups for HDL cholesterol (HDL-C), cholesterol production rate, cholesterol mass of pool A, and the rate constants KA and KAB. Rank correlations (rs) revealed that the sire progeny group means for HDL-C are closely correlated with those for the cholesterol mass of pool A (rs = 0.89), KA (rs = -0.78), and KAB (rs = -0.94). These strong correlations suggest that pool A, KA, and KAB are influenced to a large degree by the same genes that regulate HDL-C concentration. The strong inverse relationship (rs = -0.78) between HDL-C and KA suggests that the differences among these sire progeny groups for HDL-C are due chiefly to those metabolic processes which regulate cholesterol excretion from pool A. This conclusion is consistent with reports that HDL-C is a preferred precursor for bile acid synthesis.  相似文献   

20.
Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding cassette protein A1 deficient (Abca1(-/-)) mice that lack HDL and wild-type (WT) mice were intravenously injected with chylomicron-like emulsion particles that contained radiolabeled cholesterol that is liberated in the liver and partly reenters the circulation. Both groups secreted radiolabeled cholesterol from plasma into intestinal lumen and TICE was unaltered between the two mouse models. To further investigate the role of HDL, we injected HDL with radiolabeled cholesterol in WT mice and Abca1(-/-)×Sr-b1(-/-) mice that lack HDL and are also unable to clear HDL via the liver. The intestines of both mice were unable to take up and secrete radiolabeled cholesterol from HDL via TICE. Although a generally accepted major player in the hepatobiliary route-based cholesterol excretion, HDL plays no significant role in TICE in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号