首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子伴侣过量表达对蛋白质分泌及可溶性的影响   总被引:11,自引:3,他引:8  
 通过过量表达大肠杆菌分子伴侣 Sec B和 Gro EL,研究了它们对靶蛋白的分泌及可溶性的影响 .在过量表达 Sec B的宿主菌中 ,周质空间分泌蛋白总量较对照组提高了约 71 % ,GL- 7- ACA酰化酶在周质空间酶的活力较对照组提高了约 1 .5倍 ,碱性磷酸酯酶在周质空间酶的活力较对照组提高了约 54% ;在过量表达 Gro EL的宿主菌中 ,周质分泌蛋白总量较对照组提高了约 52 % ,青霉素 G酰化酶在周质空间酶的活力较对照组提高了约 76% ,鲑鱼降钙素六聚体的可溶性组分的比例由原来的 45%增加到约 90 % ,而 MS2 -人白介素 - 3融合蛋白的包涵体有约 1 5%转变为可溶性组份 .上述结果表明 ,分子伴侣 Sec B和 Gro EL的过量表达促进了靶蛋白的分泌 ,Gro EL增加了靶蛋白的可溶性  相似文献   

2.
Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield.  相似文献   

3.
大肠杆菌高效表达重组蛋白策略   总被引:6,自引:0,他引:6  
大肠杆菌表达系统是基因表达技术中发展最早和目前应用最广的经典表达系统。利用该系统表达重组蛋白具有许多优越性,但其表达效率受诸多因素的影响。本文综述国内外利用大肠杆菌表达系统高效表达外源蛋白的策略,主要包括选择合适的启动子、改变信号肽结构、提高mRNA稳定性、提高翻译效率、表达稀有密码子、降低包涵体形成及蛋白降解,利用融合蛋白与分子伴侣、调控发酵条件实现高密度培养等。  相似文献   

4.
5.
一种高效、稳定的分泌型原核表达载体的构建及应用   总被引:2,自引:0,他引:2  
以本室构建的原核表达载体pTO-T7为基础载体,PCR合成ompT引导序列,插入该载体多克隆位点上游,构建了分泌型原核表达载体pTO—OT。将2个外源基因克隆至pTO—OT,2个重组质粒在大肠杆菌中均得以高效表达,表达量为25%~30%。Western印迹分析证实了重组蛋白在大肠杆菌中表达后可被信号肽酶有效识别,切割后的重组蛋白具有良好的免疫学活性。对重组表达菌株的连续传代实验证实了该表达载体具有良好的遗传稳定性,显示了该原核表达载体在基因工程中的应用价值。  相似文献   

6.
Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. The ribosomal machinery, located in the cytoplasm is an outstanding catalyst of recombinant protein biosynthesis. Escherichia coli facilitates protein expression by its relative simplicity, its inexpensive and fast high-density cultivation, the well-known genetics and the large number of compatible tools available for biotechnology. Especially the variety of available plasmids, recombinant fusion partners and mutant strains have advanced the possibilities with E. coli. Although often simple for soluble proteins, major obstacles are encountered in the expression of many heterologous proteins and proteins lacking relevant interaction partners in the E. coli cytoplasm. Here we review the current most important strategies for recombinant expression in E. coli. Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology. The macromolecular background for a variety of obstacles and genetic state-of-the-art solutions are presented.  相似文献   

7.
8.
Human beta-defensin-2 (hBD2) is a small antimicrobial peptide with potential as a therapeutic agent. The effect of codon usage on the expression of hBD2 in Escherichia coli was studied. Two coding sequences encoding the same hBD2 precursor were both expressed as fusion protein with thioredoxin in E. coli BL21 (DE3). One is the wild-type human cDNA and the other is a gene synthesized by a PCR-based method in which rare codons were altered to those frequently used in E. coli. The expression level of recombinant hBD2 was over 50% of the total cellular protein when the synthetic gene with preferential codons was employed which was a 9-fold enhancement over the wild-type cDNA. The result shows the codon bias of the host was a major barrier in high-level expression of recombinant hBD2 and suggests a similar approach may be used in the expression of other defensins in E. coli.  相似文献   

9.
Using periplasmic penicillin amidase (PA) from Escherichia coli ATCC 11105 as a model recombinant protein, we reviewed the posttranslational bottlenecks in its overexpression and undertook attempts to enhance its production in different recombinant E. coli expression hosts. Intracellular proteolytic degradation of the newly synthesized PA precursor and translocation through the plasma membrane were determined to be the main posttranslational processes limiting enzyme production. Rate constants for both intracellular proteolytic breakdown (k(d)) and transport (k(t)) were used as quantitative tools for selection of the appropriate host system and cultivation medium. The production of mature active PA was increased up to 10-fold when the protease-deficient strain E. coli BL21(DE3) was cultivated in medium without a proteinaceous substrate, as confirmed by a decrease in the sum of the constants k(d) and k(t). The original signal sequence of pre-pro-PA was exchanged with the OmpT signal peptide sequence in order to increase translocation efficiency; the effects of this change varied in the different E. coli host strains. Furthermore, we established that simultaneous coexpression of the OmpT pac gene with some proteins of the Sec export machinery of the cell resulted in up to threefold-enhanced PA production. In parallel, we made efforts to increase PA flux via coexpression with the kil gene (killing protein). The primary effects of the kil gene were the release of PA into the extracellular medium and an approximately threefold increase in the total amount of PA produced per liter of bacterial culture.  相似文献   

10.
大肠杆菌热激反应研究及其在重组蛋白表达中的应用   总被引:1,自引:0,他引:1  
乐易林 《微生物学通报》2013,40(11):2090-2096
当大肠杆菌所处的环境温度忽然升高时, 细胞体内会激发热激反应, 体内会迅速合成多种热激蛋白, 由热激转录因子调控的热激蛋白主要包括一些分子伴侣、蛋白降解酶、折叠辅助蛋白等。热激蛋白可以促进蛋白正确折叠, 降解错误折叠的蛋白。主要介绍大肠杆菌热激蛋白的表达调控及其功能, 利用热激转录因子发展的新型温控分泌表达系统及其在蛋白可溶性表达中的应用, 以及热激分子伴侣与重组蛋白共表达的研究进展。  相似文献   

11.
Live attenuated Salmonella strains have been extensively explored as oral delivery systems for recombinant vaccine antigens and effector proteins with immunoadjuvant and immunomodulatory potential. The feasibility of this approach was demonstrated in human vaccination trials for various antigens. However, immunization efficiencies with live vaccines are generally significantly lower compared to those monitored in parenteral immunizations with the same vaccine antigen. This is, at least partly, due to the lack of secretory expression systems, enabling large-scale extracellular delivery of vaccine and effector proteins by these strains. Because of their low complexity and the terminal location of the secretion signal in the secreted protein, Type I (ATP-binding cassette) secretion systems appear to be particularly suited for development of such recombinant extracellular expression systems. So far, the Escherichia coli hemolysin system is the only Type I secretion system, which has been adapted to recombinant protein secretion in Salmonella. However, this system has a number of disadvantages, including low secretion capacity, complex genetic regulation, and structural restriction to the secreted protein, which eventually hinder high-level in vivo delivery of recombinant vaccines and effector proteins. Thus, the development of more efficient recombinant protein secretion systems, based on Type I exporters can help to improve efficacies of live recombinant Salmonella vaccines. Type I secretion systems, mediating secretion of bacterial surface layer proteins, such as RsaA in Caulobacter crescentus, are discussed as promising candidates for improved secretory delivery systems.  相似文献   

12.
AIMS: The aims of the present work were to solubilize the abundantly expressed recombinant xylulokinase in Escherichia coli and to develop a reliable xylulokinase assay. METHODS AND RESULTS: Three mutants of xylulokinase of Bacillus megaterium that were expressed at high level but formed insoluble protein in E. coli BL21(DE3)pLysS were selected for solubility study. The solubility of xylulokinase increased eight to 77-fold after introduction of molecular chaperones GroEL-GroES into the host. CONCLUSION: This investigation reports that GroEL-GroES minimizes the formation of insoluble protein in three highly expressed recombinant xylulokinases and an improved xylulokinase assay. SIGNIFICANCE AND IMPACT OF THE STUDY: Commercial production of bioethanol is critically dependent on the development of an efficient and low-cost process of enzymatic conversion of xylan, a major component in lignocellulose biomass, to xylulose-5-phosphate, which can then be channelled into pentose phosphate pathway and metabolized to ethanol. The improved intracellular xylulokinase activity is expected to facilitate the xylose degradation.  相似文献   

13.
甜蛋白Monellin基因在大肠杆菌中的高效表达   总被引:2,自引:0,他引:2  
据已报道的单链monellin甜蛋白的氨基酸序列,采用细菌偏爱密码子,人工合成了全长 294bp的 monellin基因。插入到大肠杆菌表达载体Pet_22b中,构建重组分泌型表达载体Petmo。经IPTG诱导Petmo所含有的甜蛋白基因可在大肠杆菌BL21(DE3)中高效表达,表达量占菌体可溶性蛋白的44.8%。且经纯化后测定其甜度是蔗糖的3000倍。得到的甜蛋白热稳性及耐酸性均比天然产物有所提高。  相似文献   

14.
Spinach ACP isoform I was overexpressed in Escherichia coli BL21(DE3) using a gene synthesized from codons associated with high-level expression in E. coli. The synthetic gene has extensive changes in codon usage (23 of 77 total codons) relative to that of the originally synthesized plant gene (P. D. Beremand et al., 1987, Arch. Biochem. Biophys. 256, 90-100). After expression of the new synthetic gene, purified ACP and ACP-His6 were obtained in yields of up to 70 mg L-1 of culture medium, compared to approximately 1-6 mg L-1 of purified ACP obtained from the gene composed of predicted spinach codons. In either shaken flask or fermentation culture, approximately 15% conversion to holo-ACP or holo-ACP-His6 was obtained regardless of the level of protein expression. However, coexpression of ACP-His6 with E. coli holo-ACP synthase in E. coli BL21(DE3) during pH- and dissolved O2-controlled fermentation routinely yielded greater than 95% conversion to holo-ACP-His6. Electrospray ionization mass spectrometric analysis of the purified recombinant ACPs revealed that the amino terminal Met was efficiently removed, but only if the bacterial cell lysates were prepared in the absence of EDTA. This observation is consistent with the inhibition of endogenous Met-aminopeptidase by removal of catalytically essential Co(II) and introduces the importance of considering the catalytic properties of host enzymes providing ad hoc posttranslational modification of recombinant proteins. Stearoyl-ACP-His6 was shown to be indistinguishable from stearoyl-ACP as a substrate for enzymatic acylation and desaturation. In combination, these studies provide a coordinated scheme to produce and characterize quantities of acyl-ACPs sufficient to support expanded biophysical and structural studies.  相似文献   

15.
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.  相似文献   

16.
Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution. As a part of attempts to clarify the mechanism of this phenomenon, we have described the possibility of expression of the highly active and soluble mutant MeHNL-His103Leu as well as wild-type enzyme in several expression systems. Methylotrophic yeast Pichia pastoris, protozoan host Leishmania tarentolae and two cell-free translations, including an E. coli lysate (WakoPURE system) and wheat germ translation system were used to compare expression profiles of the genes. Two distinguishable protein expression patterns were observed in prokaryotic and eukaryotic-based systems. The wild-type and mutant enzyme showed high activity for both genes (up to 10 U/ml) in eukaryotic hosts P. pastoris and L. tarentolae, while those of E. coli exhibited about 1 and 15 U/ml, respectively. The different activity level in prokaryotic systems but the same level among the eukaryotic hosts indicate the phenomenon is specific to the E. coli system. Both the wild-type and mutant enzymes were functionally expressed in eukaryotic systems, probably using the folding assistants such as chaperones. Properties of expression systems used in this study were precisely compared, too.  相似文献   

17.
The cloning, expression and purification of the glutathione (sulfur) import system ATP-binding protein (gsiA) was carried out. The coding sequence of Escherichia coli gsiA, which encodes the ATP-binding protein of a glutathione importer, was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring green fluorescent protein (GFP) reporter gene. The resulting recombinant plasmid pWaldo-GFP-GsiA was transformed into various E. coli strains, and expression conditions were optimized. The effect of five E. coli expression strains on the production of the recombinant gsiA protein was evaluated. E. coli BL21 (DE3) was found to be the most productive strain for GsiA-GFP fusion-protein expression, most of which was insoluble fraction. However, results from in-gel and Western blot analysis suggested that expression of recombinant GsiA in Rosetta (DE3) provides an efficient source in soluble form. By using GFP as reporter, the most suitable host strain was conveniently obtained, whereby optimizing conditions for overexpression and purification of the proteins for further functional and structural studies, became, not only less laborious, but also time-saving.  相似文献   

18.
An expression plasmid pPTK-hEGF2 was constructed to provide for the extracellular production of recombinant human epidermal growth factor by the Escherichia coli cells. The plasmid contained two expression cassettes, one of which carried a tandem of the fused genes ompF-hegf under the control of the tac promoter, ensuring regulated secretion of hEGF into the E. coli periplasm, and another one contained the kil gene from the ColE1 plasmid under the control of lac promoter. The regulated low-level biosynthesis of Kil protein increased the permeability of E. coli outer membrane for periplasmic proteins. This enabled the recombinant proteins secreted into the cell periplasm to outflow into the cultural medium. As a result, the E. coli strains that harboured this plasmid construct produced effectively the recombinant hEGF into the cultural medium. The yields of hEGF produced by the nTG1(pPTK-hEGF2) and HB101(pPTK-hEGF2) strains reached 25 and 30 mg/l of cell culture after 14 and 18 h of cultivation, respectively. The hEGF preparation isolated possessed biological activity both in vivo and in vitro.  相似文献   

19.
Escherichia coli lacZ is a frequently employed reporter gene for the monitoring of gene expression and recombinant protein production due the simple determination of beta-galactosidase activity in both qualitative and quantitative assays. In the absence of either total or recombinant protein synthesis, we observed a lack of correlation between protein amount and enzymatic activity in both engineered and native beta-galactosidases in Escherichia coli cells. A delayed fading of beta-galactosidase activity compared with the rapid degradation of intact protein suggests a progressive increase in enzyme-specific activity during the life of the protein. This intriguing event does not involve solubilization from major protein aggregates and it occurs both in vivo and in cell extracts, but not in solutions of purified protein. Possible explanations for this activation are examined in the context of the assisted protein folding network and proteolytic degradation of misfolded proteins.  相似文献   

20.
A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4 degrees C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8(T), that allow E. coli to grow at high rates at 4 degrees C (maximum growth rate, 0.28 h(-1)). The expression of a temperature-sensitive esterase in this host at 4 to 10 degrees C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37 degrees C (32,380 versus 190 micromol min(-1) g(-1)). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5 degrees C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号