首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural maintenance of chromosomes (SMC) proteins are present in all eukaryotes and in many prokaryotes. Eukaryotic SMC proteins form complexes with various non-SMC subunits, which affect their function, whereas the prokaryotic homologues had no known non-SMC partners and were thought to act as simple homodimers. Here we describe two novel families of proteins, widespread in archaea and (Gram-positive) bacteria, which we denote 'segregation and condensation proteins' (Scps). ScpA genes are localized next to smc genes in nearly all SMC- containing archaea, suggesting that they belong to the same operon and are thus involved in a common process in the cell. The function of ScpA was studied in Bacillus subtilis, which also harbours a well characterized smc gene. Here we show that scpA mutants display characteristic phenotypes nearly identical to those of smc mutants, including temperature- sensitive growth, production of anucleate cells, formation of aberrant nucleoids, and chromosome splitting by the so-called guillotine effect. Thus, both SMC and ScpA are required for chromosome segregation and condensation. Interestingly, mutants of another B. subtilis gene, scpB, which is localized downstream from scpA, display the same phenotypes, which indicate that ScpB is also involved in these functions. ScpB is generally present in species that also encode ScpA. The physical interaction of ScpA and SMC was proven (i) by the use of the yeast two-hybrid system and (ii) by the isolation of a complex containing both proteins from cell extracts of B. subtilis. By extension, we speculate that interaction of orthologues of the two proteins is important for chromosome segregation in many archaea and bacteria, and propose that SMC proteins generally have non-SMC protein partners that affect their function not only in eukaryotes but also in prokaryotes.  相似文献   

2.
We show that Bacillus subtilis SMC (structural maintenance of chromosome protein) localizes to discrete foci in a cell cycle-dependent manner. Early in the cell cycle, SMC moves from the middle of the cell toward opposite cell poles in a rapid and dynamic manner and appears to interact with different regions on the chromosomes during the cell cycle. SMC colocalizes with its interacting partners, ScpA and ScpB, and the specific localization of SMC depends on both Scp proteins, showing that all three components of the SMC complex are required for proper localization. Cytological and biochemical experiments showed that dimeric ScpB stabilized the binding of ScpA to the SMC head domains. Purified SMC showed nonspecific binding to double-stranded DNA, independent of Scp proteins or ATP, and was retained on DNA after binding to closed DNA but not to linear DNA. The SMC head domains and hinge region did not show strong DNA binding activity, suggesting that the coiled-coil regions in SMC mediate an association with DNA and that SMC binds to DNA as a ring-like structure. The overproduction of SMC resulted in global chromosome compaction, while SMC was largely retained in bipolar foci, suggesting that the SMC complex forms condensation centers that actively affect global chromosome compaction from a defined position on the nucleoid.  相似文献   

3.
4.
Kim JS  Shin DH  Pufan R  Huang C  Yokota H  Kim R  Kim SH 《Proteins》2006,62(2):322-328
Structural maintenance of chromosome (SMC) proteins are essential in chromosome condensation and interact with non-SMC proteins in eukaryotes and with segregation and condensation proteins (ScpA and ScpB) in prokaryotes. The highly conserved gene in Chlorobium tepidum gi 21646405 encodes ScpB (ScpB_ChTe). The high resolution crystal structure of ScpB_ChTe shows that the monomeric structure consists of two similarly shaped globular domains composed of three helices sided by beta-strands [a winged helix-turn-helix (HTH)], a motif observed in the C-terminal domain of Scc1, a functionally related eukaryotic ScpA homolog, as well as in many DNA binding proteins.  相似文献   

5.
Atomic force microscopy can potentially provide information on protein volumes, shapes, and interactions but is susceptible to variable tip-induced artifacts. In this study, we present an atomic force microscopy approach that can measure volumes of nonglobular polypeptides such as structural maintenance of chromosomes (SMC) proteins, and use it to study the interactions that occur within and between SMC complexes. Together with the protein of interest, we coadsorb a DNA molecule and use it as a fiducial marker to account for tip-induced artifacts that affect both protein and DNA, allowing normalization of protein volumes from images taken on different days and with different tips. This approach significantly reduced the error associated with volume analysis, and allowed determination of the oligomeric states and architecture of the Bacillus subtilis SMC complex, formed by the SMC protein, and by the smaller ScpA and ScpB subunits. This work reveals that SMC and ScpB are dimers and that ScpA is a stable monomer. Moreover, whereas ScpA binds directly to SMC, ScpB only binds to SMC in the presence of ScpA. Notably, the presence of both ScpA and ScpB favored the formation of higher-order structures of SMC complexes, suggesting a role for these subunits in the organization of SMC oligomers.  相似文献   

6.
The Bacillus subtilis structural maintenance of chromosomes (SMC) protein is a member of a large family of proteins involved in chromosome organization. We found that SMC is a moderately abundant protein ( approximately 1000 dimers per cell). In vivo cross-linking and immunoprecipitation assays revealed that SMC binds to many regions on the chromosome. Visualization of SMC in live cells using a fusion to the green fluorescent protein (GFP) and in fixed cells using immunofluorescence microscopy indicated that a portion of SMC localizes as discrete foci in positions similar to that of the DNA replication machinery (replisome). When visualized simultaneously, SMC and the replisome were often in similar regions of the cell but did not always co-localize. Persistence of SMC foci did not depend on ongoing replication, but did depend on ScpA and ScpB, two proteins thought to interact with SMC. Our results indicate that SMC is bound to many sites on the chromosome and a concentration of SMC is localized near replication forks, perhaps there to bind and organize newly replicated DNA.  相似文献   

7.
Hirano M  Hirano T 《The EMBO journal》2004,23(13):2664-2673
Structural maintenance of chromosomes (SMC) proteins are central regulators of higher-order chromosome dynamics from bacteria to humans. The Bacillus subtilis SMC (BsSMC) homodimer adopts a V-shaped structure with an ATP-binding catalytic domain at each end. We report here that two small proteins, ScpA and ScpB, associate with the catalytic domains of BsSMC in an ordered fashion and suppress its ATPase activity. When combined with a 'transition state' mutant of BsSMC that poorly hydrolyzes ATP, ScpA promotes stable engagement of two catalytic domains in an ATP-dependent manner. In solution, this occurs intramolecularly and closes the DNA-entry gate of an SMC dimer. ScpB further stabilizes this conformation and prevents BsSMC from binding to double-stranded DNA (dsDNA). In contrast, when the mutant BsSMC is first allowed to interact with dsDNA, subsequent addition of ScpA leads to assembly of large nucleoprotein complexes, possibly by stabilizing intermolecular engagement of the catalytic domains from different SMC dimers. We propose that the ATP-modulated engagement/disengagement cycle of SMC proteins plays both positive and negative roles in their dynamic interactions with dsDNA.  相似文献   

8.

Background  

SMC proteins are key components of several protein complexes that perform vital tasks in different chromosome dynamics. Bacterial SMC forms a complex with ScpA and ScpB that is essential for chromosome arrangement and segregation. The complex localizes to discrete centres on the nucleoids that during most of the time of the cell cycle localize in a bipolar manner. The complex binds to DNA and condenses DNA in an as yet unknown manner.  相似文献   

9.
Graumann PL 《Biochimie》2001,83(1):53-59
SMC proteins are a ubiquitous protein family, present in almost all organisms so far analysed except for a few bacteria. They function in chromosome condensation, segregation, cohesion, and DNA recombination repair in eukaryotes, and can introduce positive writhe into DNA in vitro. SMC proteins and the structurally homologous MukB protein are unusual ATPases that form antiparallel dimers, with long coiled coil segments separating globular ends capable of binding DNA. Recently, SMC proteins have been shown to be essential for chromosome condensation, segregation and cell cycle progression in bacteria. Identification of a suppressor mutation for MukB in topoisomerase I in Escherichia coli suggests that SMC proteins are involved in negative DNA supercoiling in vivo, and by this means organize and compact chromosomes. A model is discussed in which bacterial SMC proteins act after an initial separation of replicated chromosome origins into the future daughter cell, separating sister chromatids by condensing replicated DNA strands within both cell halves. This would be analogous to a pulling of DNA strands into opposite cell halves by a condensation mechanism exerted at two specialised subregions in the cell.  相似文献   

10.
Stursberg S  Riwar B  Jessberger R 《Gene》1999,228(1-2):1-12
Members of the evolutionary conserved Structural Maintenance of Chromosomes (SMC) protein family are involved in chromosome condensation and gene dosage compensation with the SMC2 and SMC4 subtypes, and sister chromatid cohesion with the SMC1 and SMC3 subtypes. The bovine recombination protein complex RC-1, which catalyzes DNA transfer reactions, contains two heterodimeric SMC polypeptides, the genes of which have now been cloned, sequenced, and classified as bovine (b)SMC1 and bSMC3. Both proteins display all the characteristic features of the SMC family. FISH analysis localized the mouse SMC3 gene to chromosome 19D2-D3. Mono- and polyclonal antibodies specific for either subtype detected high levels of protein expression in lymphoid tissues, lung, testis and ovary. No change in levels of bSMC1 and bSMC3 proteins occurred after X-ray or UV-light irradiation of various cell lines or primary cells, and the amounts of individual proteins and the heterodimer are roughly constant throughout the cell cycle. Immunofluorescence of mouse cells detected the SMC1 protein in foci associated with the chromatin. These foci dissolve and the SMC protein dissociates from the chromatin during M phase.  相似文献   

11.
We have investigated the subcellular localization of the SMC protein in the gram-positive bacterium Bacillus subtilis. Recent work has shown that SMC is required for chromosome condensation and faithful chromosome segregation during the B. subtilis cell cycle. Using antibodies against SMC and fluorescence microscopy, we have shown that SMC is associated with the chromosome but is also present in discrete foci near the poles of the cell. DNase treatment of permeabilized cells disrupted the association of SMC with the chromosome but not with the polar foci. The use of a truncated smc gene demonstrated that the C-terminal domain of the protein is required for chromosomal binding but not for the formation of polar foci. Regular arrays of SMC-containing foci were still present between nucleoids along the length of aseptate filaments generated by depleting cells of the cell division protein FtsZ, indicating that the formation of polar foci does not require the formation of septal structures. In slowly growing cells, which have only one or two chromosomes, SMC foci were principally observed early in the cell cycle, prior to or coincident with chromosome segregation. Cell cycle-dependent release of stored SMC from polar foci may mediate segregation by condensation of chromosomes.  相似文献   

12.
13.
Enzymatic degradation of collagen produces peptides, the collagen peptides, which show a variety of bioactivities of industrial interest. Alicyclobacillus sendaiensis strain NTAP-1, a slightly thermophilic, acidophilic bacterium, extracellularly produces a novel thermostable collagenolytic activity, which exhibits its optimum at the acidic region (pH 3.9) and is potentially applicable to the efficient production of such peptides. Here, we describe the purification to homogeneity, characterization, gene cloning, and heterologous expression of this enzyme, which we call ScpA. Purified ScpA is a monomeric, pepstatin-insensitive carboxyl proteinase with a molecular mass of 37 kDa which exhibited the highest reactivity toward collagen (type I, from a bovine Achilles tendon) among the macromolecular substrates examined. On the basis of the sequences of the peptides obtained by digestion of collagen with ScpA, the following synthetic peptides were designed as substrates for ScpA and kinetically analyzed: Phe-Gly-Pro-Ala*Gly-Pro-Ile-Gly (k(cat), 5.41 s(-1); K(m), 32 micro M) and Met-Gly-Pro-Arg*Gly-Phe-Pro-Gly-Ser (k(cat), 351 s(-1); K(m), 214 micro M), where the asterisks denote the scissile bonds. The cloned scpA gene encoded a protein of 553 amino acids with a calculated molecular mass of 57,167 Da. Heterologous expression of the scpA gene in the Escherichia coli cells yielded a mature 37-kDa species after a two-step proteolytic cleavage of the precursor protein. Sequencing of the scpA gene revealed that ScpA was a collagenolytic member of the serine-carboxyl proteinase family (the S53 family according to the MEROPS database), which is a recently identified proteinase family on the basis of crystallography results. Unexpectedly, ScpA was highly similar to a member of this family, kumamolysin, whose specificity toward macromolecular substrates has not been defined.  相似文献   

14.
SMC (structural maintenance of chromosomes) proteins are highly conserved and present in eukaryotes, bacteria and archaea. They function in chromosome condensation and segregation and in DNA repair. Using an insertion vector containing the pac gene for resistance to puromycin, we have created an insertion in the smc gene of Methanococcus voltae. We used epifluorescence microscopy to examine the cell and nucleoid morphology, DNA content and metabolic activity. This insertion causes gross defects in chromosome segregation and cell morphology. Approximately 20% of mutant cells contain little or no DNA, and a subset of cells ( approximately 2%) IS abnormally large (three to four times their normal diameter) titan cells. We believe that these titan cells indicate cell division arrest at a cell cycle checkpoint. The results confirm that SMC in archaea is an important player in chromosome dynamics (as it is in bacteria and eukaryotes).  相似文献   

15.
Deinococcus radiodurans contains a highly condensed nucleoid that remains to be unaltered following the exposure to high doses of γ-irradiation. Proteins belonging to the structural maintenance of chromosome protein (SMC) family are present in all organisms and were shown to be involved in chromosome condensation, pairing, and/or segregation. Here, we have inactivated the smc gene in the radioresistant bacterium D. radiodurans, and, unexpectedly, found that smc null mutants showed no discernible phenotype except an increased sensitivity to gyrase inhibitors suggesting a role of SMC in DNA folding. A defect in the SMC-like SbcC protein exacerbated the sensitivity to gyrase inhibitors of cells devoid of SMC. We also showed that the D. radiodurans SMC protein forms discrete foci at the periphery of the nucleoid suggesting that SMC could locally condense DNA. The phenotype of smc null mutant leads us to speculate that other, not yet identified, proteins drive the compact organization of the D. radiodurans nucleoid.  相似文献   

16.
17.
彭莉  张飞雄 《遗传》2001,23(2):173-176
近年来新发现的一类蛋白-染色体结构维持蛋白(SMC蛋白,structural maintenance of chromosome proteins)与染色体结构细胞周期性的动态变化紧密相关,它们参与有丝分裂染色体的集缩和分离,性染色体的剂量补偿效应,姐妹染色单体的内聚作用(cohesion),遗传重组和DNA修复等过程,本从生化特性和生物学功能两方面叙述了对SMC蛋白的研究。  相似文献   

18.
C Funk  W Vermaas 《Biochemistry》1999,38(29):9397-9404
In the cyanobacterium Synechocystis sp. PCC 6803 five genes were identified with significant sequence similarity to regions of members of the eukaryotic chlorophyll a/b binding gene family (Cab family) and to hliA, a gene coding for a small high-light-induced protein in Synechococcus sp. PCC 7942. Four of these five genes are 174-213 bp in length and code for small proteins predicted to have a single transmembrane helix. The fifth Cab-like gene in Synechocystis sp. PCC 6803 is much longer and codes for a protein of which the N-terminal 80% resemble ferrochelatase but the C-terminal domain has similarity to Cab regions. The small genes were expressed preferentially in the absence of photosystem I, but gene expression was not significantly enhanced at moderately high light intensity. Therefore they were not designated as hli (high-light-induced) as was done for the Synechococcus sp. PCC 7942 homolog. Instead, the genes have been named scp, as the corresponding polypeptides of Synechocystis sp. PCC 6803 are small Cab-like proteins (SCP). The scpA gene, which codes for ferrochelatase with a C-terminal Cab-like extension, was interrupted by the insertion of a kanamycin-resistance cassette between the ferrochelatase and Cab-like gene domains. In the PS I-less background, interruption of scpA was found to lead to increased tolerance to high light intensity and to the requirement of a slightly higher light intensity to drive photosystem II electron transfer, suggestive of decreased light-harvesting efficiency in the absence of the C-terminal extension of ScpA. Immunodetection of ScpC and ScpD indicated that either or both accumulated in PS I-less strains. These proteins were also detected in bands of more than 45 kDa on denaturing gels, raising the possibility that they may occur as stable oligomers. The SCPs represent a new group of cyanobacterial proteins that, in view of their primary structure and response to deletion of photosystem I, are likely to be involved in transient pigment binding.  相似文献   

19.
The large family of light-harvesting-like proteins contains members with one to four membrane spanning helices with significant homology to the chlorophyll a/b-binding antenna proteins of plants. From structural as well as evolutionary perspective, it is likely that the members of this family bind chlorophylls and carotenoids. However, undisputable evidence is still lacking. The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of LHCII (LHCIIb) including the chlorophyll-binding motifs. They have been proposed to act as chlorophyll-carrier proteins. Here, we analyze the in vivo absorption spectra of single scp deletion mutants in Synechocystis sp. PCC 6803 and compare the in vitro pigment binding ability of the SCP pairs ScpC/D and ScpB/E with the one of LHCII and a synthetic peptide containing the chlorophyll-binding motif (Eggink LL, Hoober JK (2000) J Biol Chem 275:9087-9090). We demonstrate that deletion of scpB alters the pigmentation in the cyanobacterial cell. Furthermore, we are able to show that chlorophylls and carotenoids interact in vitro with the pairs of ScpC/D and ScpB/E, demonstrated by fluorescence resonance energy transfer and circular dichroism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号