首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keratocytes derived from the epidermis of aquatic vertebrates are now widely used for investigation of the mechanism of cell locomotion. One of the main topics under discussion is the question of driving force development and concomitantly subcellular force distribution. Do cells move by actin polymerization-driven extension of the lamella, or is the lamella edge extended at regions of weakness by a flow of cytoplasm generated by hydrostatic pressure? Thus, elasticity changes were followed and the stiffness of the leading front of the lamella was manipulated by local application of phalloidin and cytochalasin D (CD). In scanning acoustic microscopy (SAM), elasticity is revealed from the propagation velocity of longitudinal sound waves (1 GHz). The lateral resolution of SAM is in the micrometer range. Using this method, subcellular tension fields with different stiffnesses (elasticity) can be determined. A typical pattern of subcellular stiffness distribution is related to the direction of migration. Cells forced to change their direction of movement by exposure to DC electric fields of varying polarity alter their pattern of subcellular stiffness in relationship to the new direction. The cells spread into the direction of low stiffness and retract at zones of high stiffness. The pattern of subcellular stiffness distribution reveals force distribution in migrating cells; i.e., if a cell moves exactly in a direction perpendicular to its long axis, then the contractile forces are largest along the long axis and decrease toward the short axis. Locomotion in any angle oblique to this axis requires an asymmetric stiffness distribution. Inhibition of actomyosin contractions by La3+ (2 mM), which inhibits Ca2+ influx, reduces cytoplasmic stiffness accompanied by an immediate cessation of locomotion and a change of cell shape. Local release of CD in front of a progressing lamella activates a cell to follow the CD gradient: The lamella thickens locally and is extended toward the tip of the microcapillary. Release of phalloidin stops extension of the lamella, and the cell turns away from the releasing microcapillary. The response to CD is assumed to be the result of local weakening of the cytoplasm due to severing of the actin fibrils. Phalloidin is supposed to stabilize the leading front by inhibition of F-actin depolymerization. These observations are in favor of the assumption that migration is due to an extension of the cell into the direction of minimum stiffness, and they are consistent with the hypothesis that local release of hydrostatic pressure provides the driving force for the flux of cytoplasm.  相似文献   

2.
Recent studies have indicated that the nanoindentation measured stiffness of carcinoma adherent cells is in general lower than normal cells, thus suggesting that cell stiffness may serve as a bio-marker for carcinoma. However, the proper establishment of such a conclusion would require biophysical understanding of the underlying mechanism of the cell stiffness. In this work, we compared the elastic moduli of the actin cytoskeletons of Hey A8 ovarian carcinoma cells with and without metastasis (HM and NM), as measured by 2D atomic force microscopy (AFM) with low-depth nanoindentation via a rate-jump method. The results indicate clearly that HM cells showed lower actin cytoskeleton stiffness atop of their nucleus position and higher actin cytoskeleton stiffness at their rims, compared to NM cells, suggesting that the local stiffness on the cytoskeleton can reflect actin filament distribution. Immunofluorescence staining and scanning electron microscopy (SEM) also indicated that the difference in stiffness in Hey A8 cells with different metastasis is associated with their F-actin rearrangement. Finite-element modelling (FEM) shows that a migrating cell would have its actin filaments bundled together to form stress fibers, which would exhibit lower indentation stiffness than the less aligned arrangement of filaments in a non-migrating cell. The results here indicate that the actin cytoskeleton stiffness can serve as a reliable marker for grading the metastasis of adherent carcinoma cells due to their cytoskeleton change and potentially predicting the migration direction of the cells.  相似文献   

3.
The biological impact and signalling of epithelial‐mesenchymal transition (EMT) during cancer metastasis has been established. However, the changes in biophysical properties of cancer cells undergoing EMT remain elusive. Here, we measured, via video particle tracking microrheology, the intracellular stiffness of head and neck cancer cell lines with distinct EMT phenotypes. We also examined cells migration and invasiveness in different extracellular matrix architectures and EMT‐related signalling in these cell lines. Our results show that when cells were cultivated in three‐dimensional (3D) environments, the differences in cell morphology, migration speed, invasion capability and intracellular stiffness were more pronounced among different head and neck cancer cell lines with distinct EMT phenotypes than those cultivated in traditional plastic dishes and/or seated on top of a thick layer of collagen. An inverse correlation between intracellular stiffness and invasiveness in 3D culture was revealed. Knock‐down of the EMT regulator Twist1 or Snail or inhibition of Rac1 which is a downstream GTPase of Twist1 increased intracellular stiffness. These results indicate that the EMT regulators, Twist1 and Snail and the mediated signals play a critical role in reducing intracellular stiffness and enhancing cell migration in EMT to promote cancer cells invasion.  相似文献   

4.
Durotaxis is a type of directed cell migration in which cells respond to a gradient of extracellular stiffness. Using automated tracking of positional data for large sample sizes of single migrating cells, we investigated 1) whether cancer cells can undergo durotaxis; 2) whether cell durotactic efficiency varies depending on the regional compliance of stiffness gradients; 3) whether a specific cell migration parameter such as speed or time of migration correlates with durotaxis; and 4) whether Arp2/3, previously implicated in leading edge dynamics and migration, contributes to cancer cell durotaxis. Although durotaxis has been characterized primarily in nonmalignant mesenchymal cells, little is known about its role in cancer cell migration. Diffusible factors are known to affect cancer cell migration and metastasis. However, because many tumor microenvironments gradually stiffen, we hypothesized that durotaxis might also govern migration of cancer cells. We evaluated the durotactic potential of multiple cancer cell lines by employing substrate stiffness gradients mirroring the physiological stiffness encountered by cells in a variety of tissues. Automated cell tracking permitted rapid acquisition of positional data and robust statistical analyses for migrating cells. These durotaxis assays demonstrated that all cancer cell lines tested (two glioblastoma, metastatic breast cancer, and fibrosarcoma) migrated directionally in response to changes in extracellular stiffness. Unexpectedly, all cancer cell lines tested, as well as noninvasive human fibroblasts, displayed the strongest durotactic migratory response when migrating on the softest regions of stiffness gradients (2–7 kPa), with decreased responsiveness on stiff regions of gradients. Focusing on glioblastoma cells, durotactic forward migration index and displacement rates were relatively stable over time. Correlation analyses showed the expected correlation with displacement along the gradient but much less with persistence and none with cell speed. Finally, we found that inhibition of Arp2/3, an actin-nucleating protein necessary for lamellipodial protrusion, impaired durotactic migration.  相似文献   

5.
Autonomous modes of behavior in primordial germ cell migration   总被引:2,自引:0,他引:2  
Zebrafish primordial germ cells (PGCs) are guided toward their targets by the chemokine SDF-1a. PGCs were followed during three phases of their migration: when migrating as individual cells, while remaining in a clustered configuration, and when moving as a cell cluster within the embryo. We found that individually migrating PGCs alternate between migratory and pausing modes. Pausing intervals are characterized by loss of cell polarity and correlate with subsequent changes in the direction of migration. These properties constitute an intrinsic behavior of PGCs, enabling erasure of prior polarity and re-sampling of the environment. Following migration arrest at a site of high SDF-1a levels, PGCs resume migration as a cluster. The seemingly coordinated cluster migration is a result of single-cell movement in response to local variations in SDF-1a distribution. Together, these behavioral modes allow the cells to arrive at specific destinations with high fidelity and remain at their target site.  相似文献   

6.
Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that can optimize the equivalent stiffness experienced by a cell.  相似文献   

7.
Current studies investigating the role of biophysical cues on cell migration focus on the use of culture platforms with static material parameters. However, migrating cells in vivo often encounter spatial variations in extracellular matrix stiffness. To better understand the effects of stiffness gradients on cell migration, we developed a 2.5D cell culture platform where cells are sandwiched between stiff tissue culture plastic and soft alginate hydrogel. Under these conditions, we observed migration of cells from the underlying stiff substrate into the alginate matrix. Observation of migration into alginate in the presence of integrin inhibition as well as qualitative microscopic analyses suggested an adhesion-independent cell migration mode. Observed migration was dependent on alginate matrix stiffness and the RhoA-ROCK-myosin-II pathway; inhibitors specifically targeting ROCK and myosin-II arrested cell migration. Collectively, these results demonstrate the utility of the 2.5D culture platform to advance our understanding of the effects of stiffness gradients and mechanotransductive signaling on adhesion-independent cell migration.  相似文献   

8.
Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells.  相似文献   

9.
Directional migration moves cells rapidly between points, whereas random migration allows cells to explore their local environments. We describe a Rac1 mechanism for determining whether cell patterns of migration are intrinsically random or directionally persistent. Rac activity promoted the formation of peripheral lamellae that mediated random migration. Decreasing Rac activity suppressed peripheral lamellae and switched the cell migration patterns of fibroblasts and epithelial cells from random to directionally persistent. In three-dimensional rather than traditional two-dimensional cell culture, cells had a lower level of Rac activity that was associated with rapid, directional migration. In contrast to the directed migration of chemotaxis, this intrinsic directional persistence of migration was not mediated by phosphatidylinositol 3'-kinase lipid signaling. Total Rac1 activity can therefore provide a regulatory switch between patterns of cell migration by a mechanism distinct from chemotaxis.  相似文献   

10.
Pathak A  Kumar S 《PloS one》2011,6(3):e18423
The adhesion, mechanics, and motility of eukaryotic cells are highly sensitive to the ligand density and stiffness of the extracellular matrix (ECM). This relationship bears profound implications for stem cell engineering, tumor invasion and metastasis. Yet, our quantitative understanding of how ECM biophysical properties, mechanotransductive signals, and assembly of contractile and adhesive structures collude to control these cell behaviors remains extremely limited. Here we present a novel multiscale model of cell migration on ECMs of defined biophysical properties that integrates local activation of biochemical signals with adhesion and force generation at the cell-ECM interface. We capture the mechanosensitivity of individual cellular components by dynamically coupling ECM properties to the activation of Rho and Rac GTPases in specific portions of the cell with actomyosin contractility, cell-ECM adhesion bond formation and rupture, and process extension and retraction. We show that our framework is capable of recreating key experimentally-observed features of the relationship between cell migration and ECM biophysical properties. In particular, our model predicts for the first time recently reported transitions from filopodial to "stick-slip" to gliding motility on ECMs of increasing stiffness, previously observed dependences of migration speed on ECM stiffness and ligand density, and high-resolution measurements of mechanosensitive protrusion dynamics during cell motility we newly obtained for this study. It also relates the biphasic dependence of cell migration speed on ECM stiffness to the tendency of the cell to polarize. By enabling the investigation of experimentally-inaccessible microscale relationships between mechanotransductive signaling, adhesion, and motility, our model offers new insight into how these factors interact with one another to produce complex migration patterns across a variety of ECM conditions.  相似文献   

11.
Restoration of lung homeostasis following injury requires efficient wound healing by the epithelium. The mechanisms of lung epithelial wound healing include cell spreading and migration into the wounded area and later cell proliferation. We hypothesized that mechanical properties of cells vary near the wound edge, and this may provide cues to direct cell migration. To investigate this hypothesis, we measured variations in the stiffness of migrating human bronchial epithelial cells (16HBE cells) approximately 2 h after applying a scratch wound. We used atomic force microscopy (AFM) in contact mode to measure the cell stiffness in 1.5-microm square regions at different locations relative to the wound edge. In regions far from the wound edge (>2.75 mm), there was substantial variation in the elastic modulus in specific cellular regions, but the median values measured from multiple fields were consistently lower than 5 kPa. At the wound edge, cell stiffness was significantly lower within the first 5 microm but increased significantly between 10 and 15 microm before decreasing again below the median values away from the wound edge. When cells were infected with an adenovirus expressing a dominant negative form of RhoA, cell stiffness was significantly decreased compared with cells infected with a control adenovirus. In addition, expression of dominant negative RhoA abrogated the peak increase in stiffness near the wound edge. These results suggest that cells near the wound edge undergo localized changes in cellular stiffness that may provide signals for cell spreading and migration.  相似文献   

12.
Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies.  相似文献   

13.
Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices.  相似文献   

14.
Significant progress has been achieved toward elucidating the molecular mechanisms that underlie breast cancer progression; yet, much less is known about the associated cellular biophysical traits. To this end, we use time-lapsed confocal microscopy to investigate the interplay among cell motility, three-dimensional (3D) matrix stiffness, matrix architecture, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well characterized breast cancer progression model where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Cell motility assays showed that MECs overexpressing ErbB2 alone exhibited notably high migration speeds when cultured atop two-dimensional (2D) matrices, while overexpression of 14-3-3ζ alone most suppressed migration atop 2D matrices (as compared to non-transformed MECs). Our results also suggest that co-overexpression of the 14-3-3ζ and ErbB2 proteins facilitates cell migratory capacity in 3D matrices, as reflected in cell migration speed. Additionally, 3D matrices of sufficient stiffness can significantly hinder the migratory ability of partially transformed cells, but increased 3D matrix stiffness has a lesser effect on the aggressive migratory behavior exhibited by fully transformed cells that co-overexpress both ErbB2 and 14-3-3ζ. Finally, this study shows that for MECs possessing partial or full transforming potential, those overexpressing ErbB2 alone show the greatest sensitivity of cell migration speed to matrix architecture, while those overexpressing 14-3-3ζ alone exhibit the least sensitivity to matrix architecture. Given the current knowledge of breast cancer mechanobiology, these findings overall suggest that cell motility is governed by a complex interplay between matrix mechanics and transforming potential.  相似文献   

15.
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP’s front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.  相似文献   

16.
In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.  相似文献   

17.
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg.  相似文献   

18.
Design of 3D scaffolds that can facilitate proper survival, proliferation, and differentiation of progenitor cells is a challenge for clinical applications involving large connective tissue defects. Cell migration within such scaffolds is a critical process governing tissue integration. Here, we examine effects of scaffold pore diameter, in concert with matrix stiffness and adhesivity, as independently tunable parameters that govern marrow‐derived stem cell motility. We adopted an “inverse opal” processing technique to create synthetic scaffolds by crosslinking poly(ethylene glycol) at different densities (controlling matrix elastic moduli or stiffness) and small doses of a heterobifunctional monomer (controlling matrix adhesivity) around templating beads of different radii. As pore diameter was varied from 7 to 17 µm (i.e., from significantly smaller than the spherical cell diameter to approximately cell diameter), it displayed a profound effect on migration of these stem cells—including the degree to which motility was sensitive to changes in matrix stiffness and adhesivity. Surprisingly, the highest probability for substantive cell movement through pores was observed for an intermediate pore diameter, rather than the largest pore diameter, which exceeded cell diameter. The relationships between migration speed, displacement, and total path length were found to depend strongly on pore diameter. We attribute this dependence to convolution of pore diameter and void chamber diameter, yielding different geometric environments experienced by the cells within. Bioeng. 2011; 108:1181–1193. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.  相似文献   

20.
The role of matrix mechanics on cell behavior is under intense investigation. Cells exert contractile forces on their matrix and the matrix elasticity can alter these forces and cell migratory behavior. However, little is known about the contribution of matrix mechanics and cell-generated forces to stable cell-cell contact and tissue formation. Using matrices of varying stiffness and measurements of endothelial cell migration and traction stresses, we find that cells can detect and respond to substrate strains created by the traction stresses of a neighboring cell, and that this response is dependent on matrix stiffness. Specifically, pairs of endothelial cells display hindered migration on gels with elasticity below 5500 Pa in comparison to individual cells, suggesting these cells sense each other through the matrix. We believe that these results show for the first time that matrix mechanics can foster tissue formation by altering the relative motion between cells, promoting the formation of cell-cell contacts. Moreover, our data indicate that cells have the ability to communicate mechanically through their matrix. These findings are critical for the understanding of cell-cell adhesion during tissue formation and disease progression, and for the design of biomaterials intended to support both cell-matrix and cell-cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号