首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1983,97(5):1491-1499
The in situ distribution of the 26-kdalton Main Intrinsic Polypeptide (MIP or MP 26), a putative gap junction protein in ocular lens fibers, was defined at the electron microscope level using indirect immunoferritin labeling of ultrathin frozen sections of rat lens. MIP was found distributed throughout the plasma membrane of the lens fiber cell, with no apparent distinction between junctional and nonjunctional membrane. MIP was not detectable in the basal or lateral plasma membrane of the lens epithelial cell, including the interepithelial cell gap junctions; nor was MIP detectable in the plasma membrane or gap junctions of the hepatocyte. Previous reports have indicated that the protein composition of the lens fiber cell junction differs from that of the hepatocyte gap junction. The evidence presented here suggests that the composition of the fiber cell junction and plasma membrane is also immunocytochemically distinct from that of its progenitor, the lens epithelial cell.  相似文献   

2.
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cultured mouse lens epithelial cells (mLEC). In this study, we demonstrate that exogenous KYN reduces FGF2-mediated expression of α-, β-, and γ-crystallin and MIP26 in mLEC. We show that endogenously produced KYN in mLEC of IDO transgenic animals causes similar defects in FGF2-induced protein expression and that a competitive inhibitor of IDO prevents such defects. Our data also show that KYN inhibits FGF2-induced Akt and ERK1/2 phosphorylation in mLEC, which are required for crystallin and MIP26 expression in the lens. KYN does not inhibit FGF2 binding to cells but inhibit phosphorylation of FGFR1in mLEC. Together our data suggest that KYN might inhibit FGF2-mediated fiber cell differentiation by preventing expression of crystallins and MIP26. Our studies provide a novel mechanism by which KYN can exert deleterious effects in cells.  相似文献   

3.
Lens growth involves the proliferation of epithelial cells, followed by their migration to the equator region and differentiation into secondary fiber cells. It is widely accepted that fibroblast growth factor (FGF) signaling is required for the differentiation of lens epithelial cells into crystallin-rich fibers, but this signaling is insufficient to induce full differentiation. To better understand lens development, investigatory and functional analyses of novel molecules are required. Here, we demonstrate that Equarin, which is a novel secreted molecule, was expressed exclusively in the lens equator region during chick lens development. Equarin upregulated the expression of fiber markers, as demonstrated using in ovo electroporation. In a primary lens cell culture, Equarin promoted the biochemical and morphological changes associated with the differentiation of lens epithelial cells to fibers. A loss-of-function analysis was performed using zinc-finger nucleases targeting the Equarin gene. Lens cell differentiation was markedly inhibited when endogenous Equarin was blocked, indicating that Equarin was essential for normal chick lens differentiation. Furthermore, biochemical analysis showed that Equarin directly bound to FGFs and heparan sulfate proteoglycan and thereby upregulated the expression of phospho-ERK1/2 (ERK-P) proteins, the downstream of the FGF signaling pathway, in vivo and in vitro. Conversely, the absence of endogenous Equarin clearly diminished FGF-induced fiber differentiation. Taken together, our results suggest that Equarin is involved as an FGF modulator in chick lens differentiation.  相似文献   

4.
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (JunΔ7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of “lentoid bodies,” structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of βA3/A1-crystallin mRNA, without affecting αA-crystallin mRNA. In contrast, the mutated protein, JunΔ7, had no effect no proliferation or differentiation but markedly increased the level of αA-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of αA- and βA3/A1-crystallin genes in proliferating lens cells.  相似文献   

5.
6.
7.
The time and place of the accumulation of alpha A-, beta B1- and gamma-crystallin RNA in the developing rat lens have been studied by in situ hybridization. alpha A- and gamma-crystallin RNA were first detected in the lens vesicle, while beta B1-crystallin RNA could be seen only after elongation of the primary fiber cells. Both beta B1- and gamma-crystallin RNA were confined to the fiber cells of fetal lenses, while alpha A-crystallin mRNA could also be detected in the epithelial cells. A quantification of the hybridization pattern obtained in the differentiation zone of the newborn rat lens showed that alpha A-crystallin RNA is concentrated in the cortical zone. alpha B-crystallin mRNA has the same distribution pattern. beta B1-crystallin RNA was relatively poorly detectable by in situ hybridization in both fetal and newborn rat lenses. The grain densities obtained with this probe increased from the periphery of the lens toward the interior, indicating that beta B1-crystallin RNA accumulated during differentiation of the secondary fiber cells. A similar accumulation pattern was obtained for gamma-crystallin mRNA, but, unexpectedly, this RNA could also be detected in the elongating epithelial cells. Our results show that gamma-crystallin RNA starts to accumulate as soon as visible elongation of epithelial cells occurs, during differentiation of the primary as well as the secondary fiber cells.  相似文献   

8.
The developing chicken embryo lens provides a unique model for examining the relationship between α6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that α6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell–cell interfaces of the differentiating cortical lens fiber cells. Both α6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of α6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens α6 integrin was uniquely localized along the cell–cell borders of the differentiating fiber cells, similar to β1. α6β4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of α6A and α6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that α6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with α6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that α6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of α6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the α6A isoform remained high until the cells became terminally differentiated. α6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of α6B relative to α6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

9.
10.
The actin cytoskeleton has the unique capability of integrating signaling and structural elements to regulate cell function. We have examined the ability of actin stress fiber disassembly to induce lens cell differentiation and the role of actin filaments in promoting lens cell survival. Three-dimensional mapping of basal actin filaments in the intact lens revealed that stress fibers were disassembled just as lens epithelial cells initiated their differentiation in vivo. Experimental disassembly of actin stress fibers in cultured lens epithelial cells with either the ROCK inhibitor Y-27632, which destabilizes stress fibers, or the actin depolymerizing drug cytochalasin D induced expression of lens cell differentiation markers. Significantly, short-term disassembly of actin stress fibers in lens epithelial cells by cytochalasin D was sufficient to signal lens cell differentiation. As differentiation proceeds, lens fiber cells assemble actin into cortical filaments. Both the actin stress fibers in lens epithelial cells and the cortical actin filaments in lens fiber cells were found to be necessary for cell survival. Sustained cytochalasin D treatment of undifferentiated lens epithelial cells suppressed Bcl-2 expression and the cells ultimately succumbed to apoptotic cell death. Inhibition of Rac-dependent cortical actin organization induced apoptosis of differentiating lens fiber cells. Our results demonstrate that disassembly of actin stress fibers induced lens cell differentiation, and that actin filaments provide an essential survival signal to both lens epithelial cells and differentiating lens fiber cells.  相似文献   

11.
Channels of the major intrinsic protein (MIP) of the lens transport water, thus playing an important role in lens fiber cell homeostasis. Calmodulin (CAM) interacts with MIP and possibly regulates MIP channel permeability. Protein glycation has been implicated in lens opacification. We previously identified sites of glycation of MIP, which are in close proximity to the putative CAM binding site. This study is aimed to show the effect of in vitro and in vivo glycation on CAM binding to MIP. Our results show that MIP and MP20 are the major CAM binding proteins of the lens membrane. In vitro incubation of lens membranes with 1 M glucose decreased CAM binding by 38% (P<0.001). Similarly, there was a progressive decrease in CAM binding to diabetic lens membranes compared to age-matched controls (up to 30% decrease, P<0.01). Mutation of K228 and K238 as well as a triple K mutation (K228N, K238N, K259N) of MIP resulted in a decrease in CAM binding. Thus, post-translational protein modifications of MIP influence CAM binding. Since CAM is the ubiquitous Ca(2+) receptor, decreases in CAM binding to the target protein will affect the Ca(2+)-mediated cellular processes leading to lens opacification in diabetic and aging lenses.  相似文献   

12.
13.
14.
15.
The present study uses the polymerase chain reaction and in situ hybridization to examine c-myc and N-myc mRNA in the embryonic chicken lens at 6, 10, 14 and 19 days of development and compares the pattern of expression obtained with the developmental pattern of cell proliferation and differentiation. In the central epithelium, c-myc mRNA levels were proportional to the percentage of proliferating cells throughout development. N-myc mRNA expression in this region was relatively low and showed no correlation with cell proliferation. The ratio of N-myc to c-myc mRNA increased markedly with the onset of epithelial cell elongation and terminal fiber cell differentiation, although both c-myc and N-myc mRNAs continued to be expressed in postmitotic, elongating cells of the equatorial epithelium and in terminally differentiating lens fiber cells. Thus, increased expression of N-myc, a gene whose protein product may compete with c-myc protein for dimerization partners, accompanies the dissociation of c-myc expression and cell proliferation during terminal differentiation of lens fiber cells.  相似文献   

16.
17.
The Role of MIP in Lens Fiber Cell Membrane Transport   总被引:1,自引:1,他引:0  
MIP has been hypothesized to be a gap junction protein, a membrane ion channel, a membrane water channel and a facilitator of glycerol transport and metabolism. These possible roles have been indirectly suggested by the localization of MIP in lens gap junctional plaques and the properties of MIP when reconstituted into artificial membranes or exogenously expressed in oocytes. We have examined lens fiber cells to see if these functions are present and whether they are affected by a mutation of MIP found in Cat Fr mouse lens. Of these five hypothesized functions, only one, the role of water channel, appears to be true of fiber cells in situ. Based on the rate of volume change of vesicles placed in a hypertonic solution, fiber cell membrane lipids have a low water permeability (p H2O ) on the order of 1 μm/sec whereas normal fiber cell membrane p H2O was 17 μm/sec frog, 32 μm/sec rabbit and 43 μm/sec mouse. Cat Fr mouse lens fiber cell p H2O was reduced by 13 μm/sec for heterozygous and 30 μm/sec for homozygous mutants when compared to wild type. Lastly, when expressed in oocytes, the p H2O conferred by MIP is not sensitive to Hg2+ whereas that of CHIP28 (AQP1) is blocked by Hg2+. The fiber cell membrane p H2O was also not sensitive to Hg2+ whereas lens epithelial cell p H2O (136 μm/sec in rabbit) was blocked by Hg2+. With regard to the other hypothesized roles, fiber cell membrane or lipid vesicles had a glycerol permeability on the order of 1 nm/sec, an order of magnitude less than that conferred by MIP when expressed in oocytes. Impedance studies were employed to determine gap junctional coupling and fiber cell membrane conductance in wild-type and heterozygous Cat Fr mouse lenses. There was no detectable difference in either coupling or conductance between the wild-type and the mutant lenses. Received: 17 February 1999/Revised: 16 April 1999  相似文献   

18.
19.
The developing chicken embryo lens provides a unique model for examining the relationship between alpha6 integrin expression and cell differentiation, since multiple stages of differentiation are expressed concurrently at one stage of development. We demonstrate that alpha6 integrin is likely to mediate the inductive effects of laminin on lens differentiation as well as to function in a matrix-independent manner along the cell-cell interfaces of the differentiating cortical lens fiber cells. Both alpha6 isoform expression and its linkage to the cytoskeleton were regulated in a differentiation-specific manner. The association of alpha6 integrin with the Triton-insoluble cytoskeleton increased as the lens cells differentiated, reaching its highest levels in the cortical fiber region where the lens fiber cells are formed. In this region of the lens alpha6 integrin was uniquely localized along the cell-cell borders of the differentiating fiber cells, similar to beta1. alpha6beta4, the primary transmembrane protein of hemidesmosomes, is also expressed in the lens, but in the absence of hemidesmosomes. Differential expression of alpha6A and alpha6B isoforms with lens cell differentiation was seen at both the mRNA and the protein levels. RT-PCR studies demonstrated that alpha6B was the predominant isoform expressed both early in development, embryonic day 4, and in the epithelial regions of the day 10 embryonic lens. Isoform switching, with alpha6A now the predominant isoform, occurred in the fiber cell zones. Immunoprecipitation studies showed that alpha6B, which is characteristic of undifferentiated cells, was expressed by the lens epithelial cells but was dramatically reduced in the lens fiber zones. Expression of alpha6B began to drop as the cells initiated their differentiation and then dropped precipitously in the cortical fiber zone. In contrast, expression of the alpha6A isoform remained high until the cells became terminally differentiated. alpha6A was the predominant isoform expressed in the cortical fiber region. The down-regulation of alpha6B relative to alpha6A provides a developmental switch in the process of lens fiber cell differentiation.  相似文献   

20.
This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号