首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallothionein (MT) isoforms from various liver tissues were separated with capillary zone electrophoresis (CZE) using a polyacrylamide-coated tube at neutral pH. The electrophoresis was performed on MT-1 and MT-2 purified from mouse, rat, rabbit and human livers. The retention times of mouse and rat MT-1 coincided, while the retention times of rabbit and human MT-1 were longer. The retention times of MT-2 purified from the four sources were the same. MT-1 and MT-2 separated more definitely with N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)-Tris buffer (25 mM, pH 7.4) than with N-tris(hydroxymethyl)methyl-3-aminopropane sulfonic acid (TAPS)-Tris buffer (25 mM, pH 7.7) or with N-(2-acetamido)iminodiacetic acid (ADA)-Tris buffer (25 mM, pH 7.4). In addition, liver MT isoforms prepared from Zn- or Cd-administered mice could be separated.  相似文献   

2.
The aim of this study was to identify metallothionein (MT) isoforms in mouse liver by using capillary zone electrophoresis (CZE). Purified MT-1 and MT-2 isoforms were completely separated by CZE using a polyacrylamide-coated tube at physiologic pH. There were two peaks in the cytosol fraction prepared from zinc-injected mouse liver, in which the migration times corresponded with those of purified MT-1 and MT-2 isoforms. When anti-MT monoclonal antibody was added with the purified MT-1 or MT-2 solution, the peaks decreased. Furthermore, the two peaks in the cytosol prepared from Zn-injected mouse liver decreased in a time-dependent manner from the electropherogram after the addition of the antibody. Therefore, those peaks were identified as MT-1 and MT-2 isoforms, respectively. In conclusion, the addition of anti-MT monoclonal antibody to the cytosol fraction of tissues is an effective method for identification of MT isoforms after separation using CZE.  相似文献   

3.
The third isoform of mammalian metallothioneins (MT-3), mainly expressed in brain and down-regulated in Alzheimer's disease, exhibits neuroinhibitory activity in vitro and a highly flexible structure that distinguishes it from the widely expressed MT-1/-2 isoforms. Previously, we showed that two conserved prolyl residues of MT-3 are crucial for both the bioactivity and cluster dynamics of this isoform. We have now used genetic engineering to introduce these residues into mouse MT-1. The S6P,S8P MT-1 mutant is inactive in neuronal survival assays. However, the additional introduction of the unique Thr5 insert of MT-3 resulted in a bioactive MT-1 form. Temperature-dependent and saturation transfer (113)Cd NMR experiments performed on the (113)Cd-reconstituted wild-type and mutant Cd(7)-MT-1 forms revealed that the gain of MT-3-like neuronal inhibitory activity is paralleled by an increase in conformational flexibility and intersite metal exchange in the N-terminal Cd(3)-thiolate cluster. The observed correlation suggests that structure/cluster dynamics are critical for the biological activity of MT-3. We propose that the interplay between the specific Pro-induced conformational requirements and those of the metal-thiolate bonds gives rise to an alternate and highly fluctuating cluster ensemble kinetically trapped by the presence of the (5)TCPCP(9) motif. The functional significance of such heterogeneous cluster ensemble is discussed.  相似文献   

4.
Metallothioneins (MTs), determined by polyacrylamide-coated capillary zone electrophoresis (CZE), coincided well with those described by enzyme-linked immunosorbent assay. By using CZE, MT isoforms 1 (MT-1) and 2 (MT-2) were well separated and determined in the liver cytosol of LEC rats and Wistar rats administered CdCl(2). The total concentrations of MTs in the liver cytosol of LEC rats increased age-dependently as 1.0, 2.1, and 7.2mg/g wet weight of the liver at the age of 5, 10, and 15 weeks, respectively, and those of Wistar rats that had received daily CdCl(2) also increased with time of CdCl(2) as 0.5 and 1.2mg/g wet weight of the liver for 3 and 6 consecutive administration days, respectively. The MT-1/MT-2 ratio in the liver cytosol of LEC rats decreased age-dependently as 1.75, 1.49, and 0.76 at the age of 5, 10, and 15 weeks, respectively. In contrast, that of Wistar rats increased with time of exposure to the metal ion CdCl(2) as 1.1 and 1.6 for 3 and 6 administration days, respectively. Copper accumulation in the liver of LEC rats has already been reported. The present results indicated that the mechanism of the induction of MT synthesis differs between LEC rats, who lack ATP7B, and Wistar rats, who were given a toxic metal ion. On the basis of these results, we propose that MT-1 is related to the metabolism or detoxification of toxic metals such as Cd, and in contrast, MT-2 is responsible for the homeostasis of essential metals such as Cu.  相似文献   

5.
Mouse metallothioneins (MTs) were separated into three isoforms by an anion-exchange h.p.l.c. column; conventionally isolated MT-1 and MT-2 showed a single peak (MT-1-1) and two peaks (MT-2-1 and MT-2-2), respectively. In growing cells, developing hepatocytes and growing tumour cells, MT-1/MT-2 ratios were less than 0.6, irrespective of the type of MT inducer, whereas adult liver post-mitotic cells had a ratio of more than 1.0. A large amount of the MT-2-2 subfraction was found in dexamethasone-treated FM3A cells; 90% of MTs was MT-2-2, suggesting that glucocorticoid hormone mainly induces MT-2-2 in tumour cells.  相似文献   

6.
To investigate Zn and Cu accumulation and isometallothionein (iso-MT) induction in ascites-sarcoma S180A cells, 5 micrograms of Zn2+ or Cu2+/g body weight was administered to tumour-bearing mice intraperitoneally. In the tumour cells the Zn or Cu concentration increased more than in the host liver, which is the target organ for those metals; the maximum Zn or Cu level was about 2-3 times that in the host liver. The amounts of Zn-MT or Cu-MT accumulated in the tumour cells and host liver were proportional to such dose accumulation levels in the each cytosol; the maximum level of Zn-MT or Cu-MT was 4 or 2 times higher than in the host liver. MT accumulated in the tumour cells showed two subfractions (MT-1 and MT-2); the ratio of Zn (or Cu) bound to MT-1 to that bound to MT-2 in the host liver and tumour cells was 1.0 (or 1.0) and 0.7 (or 0.25) respectively, suggesting that the induction level of MT-2 in the tumour cells is more than that of MT-1. The h.p.l.c. profiles (using an anion-exchange column) of the isolated MT-1 and MT-2 subfractions from Zn-treated normal-mouse liver showed a single peak (MT-1-1) and two peaks (MT-2-1 and MT-2-2) respectively; mouse MTs were separated into three isoforms. In the ascites cells, the MT fraction obtained by a gel filtration was also separated into three isoforms; however, the amount of MT-2-1 isoform was 3 times that in the Zn-treated normal-mouse liver.  相似文献   

7.
Thimerosal, an ethyl mercury compound, is used worldwide as a vaccine preservative. We previously observed that the mercury concentration in mouse brains did not increase with the clinical dose of thimerosal injection, but the concentration increased in the brain after the injection of thimerosal with lipopolysaccharide, even if a low dose of thimerosal was administered. Thimerosal may penetrate the brain, but is undetectable when a clinical dose of thimerosal is injected; therefore, the induction of metallothionein (MT) messenger RNA (mRNA) and protein was observed in the cerebellum and cerebrum of mice after thimerosal injection, as MT is an inducible protein. MT-1 mRNA was expressed at 6 and 9 h in both the cerebrum and cerebellum, but MT-1 mRNA expression in the cerebellum was three times higher than that in the cerebrum after the injection of 12 μg/kg thimerosal. MT-2 mRNA was not expressed until 24 h in both organs. MT-3 mRNA was expressed in the cerebellum from 6 to 15 h after the injection, but not in the cerebrum until 24 h. MT-1 and MT-3 mRNAs were expressed in the cerebellum in a dose-dependent manner. Furthermore, MT-1 protein was detected from 6 to 72 h in the cerebellum after 12 μg/kg of thimerosal was injected and peaked at 10 h. MT-2 was detected in the cerebellum only at 10 h. In the cerebrum, little MT-1 protein was detected at 10 and 24 h, and there were no peaks of MT-2 protein in the cerebrum. In conclusion, MT-1 and MT-3 mRNAs but not MT-2 mRNA are easily expressed in the cerebellum rather than in the cerebrum by the injection of low-dose thimerosal. It is thought that the cerebellum is a sensitive organ against thimerosal. As a result of the present findings, in combination with the brain pathology observed in patients diagnosed with autism, the present study helps to support the possible biological plausibility for how low-dose exposure to mercury from thimerosal-containing vaccines may be associated with autism.  相似文献   

8.
Human metallothioneins, small cysteine- and metal-rich proteins, play an important role in the acquired resistance to platinum-based anticancer drugs. These proteins contain a M(II)4(CysS)11 cluster and a M(II)3(CysS)9 cluster localized in the α-domain and the β-domain, respectively. The noninducible isoform metallothionein-3 (Zn7MT-3) is mainly expressed in the brain, but was found overexpressed in a number of cancer tissues. Since the structural properties of this isoform substantially differ from those of the ubiquitously occurring Zn7MT-1/Zn7MT-2 isoforms, the reactions of cis-diamminedichloridoplatinum(II) (cisplatin) and trans-diamminedichloridoplatinum(II) (transplatin) with human Zn7MT-3 were investigated and the products characterized. A comparison of the reaction kinetics revealed that transplatin reacts with cysteine ligands of Zn7MT-3 faster than cisplatin. In both binding processes, stoichiometric amounts of Zn(II) were released from the protein. Marked differences between the reaction rates of cisplatin and transplatin binding to Zn7MT-3 and the formation of the Pt–S bonds suggest that the binding of both Pt(II) compounds is a complex process, involving at least two subsequent binding steps. The electrospray ionization mass spectrometry characterization of the products showed that whereas all ligands in cisplatin were replaced by cysteine thiolates, transplatin retained its carrier ammine ligands. The 113Cd NMR studies of Pt1 113Cd6MT-3 revealed that cisplatin binds preferentially to the β-domain of the protein. The rates of reaction of cisplatin and transplatin with Zn7MT-3 were much faster than those of cisplatin and transplatin with Zn7MT-2. The biological consequences of a substantially higher reactivity of cisplatin toward Zn7MT-3 than Zn7MT-2 in the acquired resistance to platinum-based drugs are discussed.  相似文献   

9.
10.
Oz G  Zangger K  Armitage IM 《Biochemistry》2001,40(38):11433-11441
The brain specific member of the metallothionein (MT) family of proteins, metallothionein-3, inhibits the growth and survival of neurons, in contrast to the ubiquitous mammalian MT isoforms, MT-1 and MT-2, that are found in most tissues and are thought to function in metal ion homeostasis and detoxification. Solution NMR was utilized to determine the structural and dynamic differences of MT-3 from MT-1 and 2. The high-resolution solution structure of the C-terminal alpha-domain of recombinant mouse MT-3 revealed a tertiary fold very similar to MT-1 and 2, except for a loop that accommodates an acidic insertion relative to these isoforms. This loop was distinguished from the rest of the domain by dynamics of the backbone on the nano- to picosecond time-scale shown by (15)N relaxation studies and was identified as a possible interaction site with other proteins. The N-terminal beta-domain contains the region responsible for the growth inhibitory activity, a CPCP tetrapeptide close to the N-terminus. Because of exchange broadening of a large number of the NMR signals from this domain, homology modeling was utilized to calculate models for the beta-domain and suggested that while the backbone fold of the MT-3 beta-domain is identical to MT-1 and 2, the second proline responsible for the activity, Pro9, may show structural heterogeneity. (15)N relaxation analyses implied fast internal motions for the beta-domain. On the basis of these observations, we conclude that the growth inhibitory activity exhibited by MT-3 is a result of a combination of local structural differences and global dynamics in the beta-domain.  相似文献   

11.
A competitive enzyme-linked immunosorbent assay (ELISA) for the measurement of metallothionein (MT) in tissues and body fluids has been developed. The ELISA employs the IgG fraction of a rabbit antiserum to rat liver Cd-MT-2 polymer, a biotinylated secondary antibody, and peroxidase conjugated avidin. With a 1:4000 dilution of the immunoglobulins, typical standard curves (logit-log regression) provide a linear range of 0.1–100 ng for MT-2 and 10–1000 ng for MT-1. Fifty percent inhibition is accomplished with 15 ng and 250 ng for MT-2 and MT-1, respectively. Rat liver MT-1 and MT-2 containing different metals (Ag, Cu, and Zn) inhibited the antibodies as effectively as CdMT. However, the antibodies exhibited greater affinity for both Apo-MT isoforms. Previously reported discrepancies between results obtained by metal binding assays (e.g., Ag-hem binding) and radioimmunoassay for MT levels in tissues have been largely resolved. By addition of 1% Tween 20 to samples, the ELISA routinely estimated the total MT in samples of rat, mouse, and human liver and kidney at 88% of the value obtained by the silver-hem binding assay. Specific antibodies to MT-2 were purified from our anti-serum by affinity purification using CH-Sepharose 4B coupled with rat liver MT-1. Estimation of MT in samples using purified MT-2 antibodies provided slightly lower values (72%) for MT in tissues as compared to the Ag-hem method. The predominant form of MT in tissues of control animals was found to be MT-2. Therefore, the MT-2 specific antibodies may be useful for the study of the functions of MT isoforms. Levels of total MT in tissues and biological fluids of rats injected with CdCl2 (0.3 mg Cd/kg) and Cd-MT (0.3 mg Cd/kg) were estimated by ELISA. The results suggest urinary MT levels may be related to kidney damage.  相似文献   

12.
Mammalian metallothionein-4 (MT-4) was found to be specifically expressed in stratified squamous epithelia where it plays an essential but poorly defined role in regulating zinc or copper metabolism. Here we report on the organization, stability, and the pathway of metal-thiolate cluster assembly in MT-4 reconstituted with Cd(2+) and Co(2+) ions. Both the (113)Cd NMR studies of (113)Cd(7)MT-4 and the spectroscopic characterization of Co(7)MT-4 showed that, similar to the classical MT-1 and MT-2 proteins, metal ions are organized in two independent Cd(4)Cys(11) and Cd(3)Cys(9) clusters with each metal ion tetrahedrally coordinated by terminal and bridging cysteine ligands. Moreover, we have demonstrated that the cluster formation in Cd(7)MT-4 is cooperative and sequential, with the Cd(4)Cys(11) cluster being formed first, and that a distinct single-metal nucleation intermediate Cd(1)MT-4 is required in the cluster formation process. Conversely, the absorption and circular dichroism features of metal-thiolate clusters in Cd(7)MT-4 indicate that marked differences in the cluster geometry exist when compared with those in Cd(7)MT-1/2. The biological implication of our studies as to the role of MT-4 in zinc metabolism of stratified epithelia is discussed.  相似文献   

13.
We have used free-solution capillary electrophoresis (FSCE) to separate three distinct mouse metallothionein (MT) isoforms, MT-1, MT-2 and MT-3. FSCE was conducted in an uncoated fused-silica capillary (57 cm × 50 μm I.D., 50 cm to detector) using 50 mM sodium phosphate buffer adjusted to pH 7.0 or 2.0. At neutral pH, each of the three isoform peaks were well resolved from a mixture with the order of migration (MT-1> MT-2> MT-3) related to the net negative charge on the protein. At acidic pH, the migration order was reversed with MT-3 migrating fastest, suggesting MT-3 had a higher net positive charge than MT-2 or MT-1. UV absorbance spectra (190–300 nm) confirmed the presence of Zn in MT-1 and MT-2. MT-3, which was saturated with Cd to stabilize the protein, gave a spectrum characteristic of the Cd---S charge transfer (shoulder at ca. 250 nm). At pH 2.0, the absorbance spectra for all three mouse MTs were characteristic of the metal-free form of the protein (apothionein). Thus, FSCE conducted at neutral pH separates MT isoforms with their metals intact, whereas at pH 2.0, both the Zn and the Cd dissociate from the protein during the run.  相似文献   

14.
15.
16.
17.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

18.
Mammalian metallothioneins (MTs) are involved in cellular metabolism of zinc and copper and in cytoprotection against toxic metals and reactive oxygen species. MT-3 plays a specific role in the brain and is down-regulated in Alzheimer's disease. To evaluate differences in metal binding, we conducted direct metal competition experiments with MT-3 and MT-2 using electrospray ionization mass spectroscopy (ESI-MS). Results demonstrate that MT-3 binds Zn2+ and Cd2+ ions more weakly than MT-2 but exposes higher metal-binding capacity and plasticity. Titration with Cd2+ ions demonstrates that metal-binding affinities of individual clusters of MT-2 and MT-3 are decreasing in the following order: four-metal cluster of MT-2>three-metal cluster of MT-2 approximately four-metal cluster of MT-3>three-metal cluster of MT-3>extra metal-binding sites of MT-3. To evaluate the reasons for weaker metal-binding affinity of MT-3 and the enhanced resistance of MT-3 towards proteolysis under zinc-depleted cellular conditions, we studied the secondary structures of apo-MT-3 and apo-MT-2 by CD spectroscopy. Results showed that apo-MT-3 and apo-MT-2 have almost equal helical content (approximately 10%) in aqueous buffer, but that MT-3 had slightly higher tendency to form alpha-helical secondary structure in TFE-water mixtures. Secondary structure predictions also indicated some differences between MT-3 and MT-2, by predicting random coil for common MTs, but 22% alpha-helical structure for MT-3. Combined, all results highlight further differences between MT-3 and common MTs, which may be related with their functional specificities.  相似文献   

19.
20.
Hasler DW  Jensen LT  Zerbe O  Winge DR  Vasák M 《Biochemistry》2000,39(47):14567-14575
Human neuronal growth inhibitory factor, a metalloprotein classified as metallothionein-3 (MT-3), impairs the survival and the neurite formation of cultured neurons. In these studies the double P7S/P9A mutant (mutMT-3) and single mutants P7S and P9A of human Zn(7)-MT-3 were generated, and their effects on the biological activity and the structure of the protein were examined. The biological results clearly established the necessity of both proline residues for the inhibitory activity, as even single mutants were found to be inactive. Using electronic absorption, circular dichroism (CD), magnetic CD (MCD), and (113)Cd NMR spectroscopy, the structural features of the metal-thiolate clusters in the double mutant Cd(7)-mutMT-3 were investigated and compared with those of wild-type Cd(7)-MT-3 [Faller, P., Hasler, D. W., Zerbe, O., Klauser, S., Winge, D. R., and Vasák, M. (1999) Biochemistry 38, 10158] and the well characterized Cd(7)-MT-2a from rabbit liver. Similarly to (113)Cd(7)-MT-3 the (113)Cd NMR spectrum of (113)Cd(7)-mutMT-3 at 298 K revealed four major and three minor resonances (approximately 20% of the major ones) between 590 and 680 ppm, originating from a Cd(4)S(11) cluster in the alpha-domain and a Cd(3)S(9) cluster in the beta-domain, respectively. Due to the presence of dynamic processes in the structure of MT-3 and mutMT-3, all resonances showed the absence of resolved homonuclear [(113)Cd-(113)Cd] couplings and large apparent line widths (between 140 and 350 Hz). However, whereas in (113)Cd(7)-mutMT-3 the temperature rise to 323 K resulted in a major recovery of the originally NMR nondetectable population of the Cd(3)S(9) cluster resonances, no such temperature effect was observed in (113)Cd(7)-MT-3. To account for the observed NMR features, a dynamic structural model for the beta-domain is proposed, which involves a folded and a partially unfolded state. It is suggested that in the partially unfolded state a slow cis/trans isomerization of Cys-Pro(7) or Cys-Pro(9) amide bonds in (113)Cd(7)-MT-3 takes place and that this process represents a rate-limiting step in a correct domain refolding. In addition, closely similar apparent stability constants of human MT-3, mutMT-3, and rabbit MT-2a with Cd(II) and Zn(II) ions were found. These results suggest that specific structural features dictated by the repetitive (Cys-Pro)(2) sequence in the beta-domain of MT-3 and not its altered metal binding affinity compared to MT-1/MT-2 isoforms are responsible for the biological activity of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号