首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To ascertain the feeding habits of benthic juvenile yellowfin goby Acanthogobius flavimanus, the gut contents of 599 specimens (15–41 mm in standard length, SL), collected on a tidal mudflat in the Tama River estuary throughout the diel cycle, were examined. The major prey items changed from harpacticoid copepods to errant and sedentary polychaetes at ca. 20 mm SL. Prey width increased with fish size. Fish of 26–28 mm SL fed mainly from sunset to morning, with highest feeding intensity during twilight hours and/or high tide. Based on the gut evacuation rate estimated from a forced feeding experiment in the laboratory and data for the diel change of mean gut-content volume in the field, the daily ration of juvenile yellowfin goby (26–28 mm SL) was calculated to be 13.8 mm3 fish−1 day−1. This volume is approximately equivalent to 3.9 individuals of the errant polychaete Ceratonereis erythraeensis (9.7 mm in body length, BL) or 8.1 individuals of the sedentary polychaete Prionospio japonica (14.8 mm BL), both species occurring abundantly on the mudflat during the study.  相似文献   

2.
Seasonal, ontogenetic, and diel variations in the diets of chum salmon, Oncorhynchus keta, were examined by analyzing the stomach contents of 1398 fish (300–755 mm fork length) collected in the Bering Sea during summer and early autumn of 2002. Whereas mesozooplankton, including euphausiids, hyperiids, and gastropods, constituted the greatest portion of the stomach contents during the summer, forage fishes (Stenobrachius leucopsarus and Atka mackerel, Pleurogrammus monopterygius) were the most important items during early autumn. Although no apparent diel trend was found in feeding intensity, distinct diel differences in prey composition were observed. Chum salmon caught in the morning contained Stenobrachius leucopsarus, whereas those caught in the afternoon had mainly fed on euphausiids. Thus, chum salmon diets change temporally because of changes in prey availability that result from differences in the annual life cycles and diurnal vertical migrations of prey species.  相似文献   

3.
Ecological theory suggests that the behaviour, growth and abundance of predators will be strongly influenced by the abundance of prey. Predators may in turn play an important role in structuring prey populations and communities. Responses of predators to variation in prey abundance have most commonly been demonstrated in low-diversity communities where food webs are relatively simple. How predators respond in highly diverse assemblages such as in coral reef habitats is largely unknown. This study describes an experiment that examined how the movement, diet and growth of the coral reef piscivore, Cephalopholis boenak (Serranidae) responded to variation in the abundance of its prey. Predator densities were standardised on small patch reefs made from the lagoonal reef-building coral, Porites cylindrica. These patch reefs exhibited natural variation in the abundance and community structure of multiple species of prey. However, our experiment generated a relatively simple predator–prey relationship, with C. boenak primarily responding to the most abundant species of prey. Three responses of predators were observed: aggregative, functional and developmental. Thirty-one per cent of individuals moved between patch reefs during the experiment, all from areas of relatively low to high prey density. Feeding rates were higher on patch reefs of high prey density, while growth rates of fish that remained on low prey density reefs throughout the experiment were lower. Growth rates of C. boenak on the experimental reefs were also much higher than for those living on natural patch reefs over the same time period, corresponding with overall differences in prey abundance. These results suggest that local abundance, feeding rate and growth of C. boenak were closely linked to the abundance of their main prey. This combination of predatory responses is a potential mechanism behind recent observations of density-dependent mortality and population regulation of prey in coral reef fish communities.  相似文献   

4.
Blackfin tuna (Thunnus atlanticus) is a small epipelagic oceanic species known only from the western Atlantic. In Tobago, the Lesser Antilles, blackfin tuna is caught by the artisanal fishery. The diet of this species was examined during the summer of 2004 for fish landed at the Charlotteville fish market in Tobago. T. atlanticus ranged from 32 to 91 cm FL (0.7–12.4 kg). Overall numerical abundance of prey items comprised fish (48%), crustaceans (46%) and cephalopods (6%). Prey species included small pelagics such as anchovies (ranked as most important prey overall), juveniles of larger pelagics such as jacks, juveniles of fish found in coral reef communities as adults, e.g. squirrelfishes, and some mesopelagic species. The importance of major diet categories differed significantly with predator size, with fishes becoming more important and crustaceans less important with increasing size of the blackfin tuna. This study has improved our scant knowledge of the blackfin tuna diet in the Lesser Antilles.  相似文献   

5.
The fungiid Heliofungia actiniformis is one of the most popular coral species in the Indonesian aquarium trade, yet information on the biology of this species is limited. H. actiniformis growth rates, population size–frequency distributions and the seasonality of recruitment rates were measured at three replicate sites in the Spermonde Archipelago, South Sulawesi. Growth and population models were applied to estimate coral ages, mortality rates and the size of maximum yield. Growth decreased linearly with polyp size. High numbers of attached polyps budded from clusters of stalks attached to the reef, with each cluster originating from the settlement of a sexually produced larva. Neither the settlement of sexual recruits, nor their asexual budding, showed seasonality. The overall population structure reflected the high mortality rates of young, attached polyps (Z = 0.5–0.6 yr−1), and the much lower mortalities of free-living individuals (Z = 0.05–0.08 yr−1). There were no statistically significant differences in overall mortality rates and the age–frequency distributions of polyps aged 0–15 years between the sites. Differences in the abundance of large H. actiniformis polyps at the three replicate sites were correlated with percent cover of coral rubble. The application of the Beverton and Holt model revealed the highest biomass per H. actiniformis recruit was 12 cm, corresponding to a polyp age of 20 years.  相似文献   

6.
A reciprocal transplant experiment (RTE) of the reef-building coral Porites lobata between shallow (1.5 m at low tide) back reef and forereef habitats on Ofu and Olosega Islands, American Samoa, resulted in phenotypic plasticity for skeletal characteristics. Transplants from each source population (back reef and forereef) had higher skeletal growth rates, lower bulk densities, and higher calcification rates on the back reef than on the forereef. Mean annual skeletal extension rates, mean bulk densities, and mean annual calcification rates of RTE groups were 2.6–9.8 mm year−1, 1.41–1.44 g cm−3, and 0.37–1.39 g cm−2 year−1 on the back reef, and 1.2–4.2 mm year−1, 1.49–1.53 g cm−3, and 0.19–0.63 g cm−2 year−1 on the forereef, respectively. Bulk densities were especially responsive to habitat type, with densities of transplants increasing on the high energy forereef, and decreasing on the low energy back reef. Skeletal growth and calcification rates were also influenced by source population, even though zooxanthella genotype of source colonies did not vary between sites, and there was a transplant site x source population interaction for upward linear extension. Genetic differentiation may explain the source population effects, or the experiment may have been too brief for phenotypic plasticity of all skeletal characteristics to be fully expressed. Phenotypic plasticity for skeletal characteristics likely enables P. lobata colonies to assume the most suitable shape and density for a wide range of coral reef habitats.  相似文献   

7.
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral‐feeding fishes are known to be highly selective feeders on particular coral genera or species and even different parts of individual coral colonies. The absence of strong correlations between the nutritional value of corals and prey preferences suggests other factors such as polyp accessibility may be important. Here, we investigated within‐colony feeding selectivity by the corallivorous filefish, Oxymonacanthus longirostris, and if prey accessibility determines foraging patterns. After confirming that this fish primarily feeds on coral polyps, we examined whether fish show a preference for different parts of a common branching coral, Acropora nobilis, both in the field and in the laboratory experiments with simulated corals. We then experimentally tested whether nonuniform patterns of feeding on preferred coral species reflect structural differences between polyps. We found that O. longirostris exhibits nonuniform patterns of foraging in the field, selectively feeding midway along branches. On simulated corals, fish replicated this pattern when food accessibility was equal along the branch. However, when food access varied, fish consistently modified their foraging behavior, preferring to feed where food was most accessible. When foraging patterns were compared with coral morphology, fish preferred larger polyps and less skeletal protection. Our results highlight that patterns of interspecific and intraspecific selectivity can reflect coral morphology, with fish preferring corals or parts of coral colonies with structural characteristics that increase prey accessibility.  相似文献   

8.
Corallivorous gastropods of the genus Drupella are known for population outbreaks throughout the Indo-Pacific region. Despite their potential to destroy wide areas of coral reef, prey preferences have never been analyzed with respect to prey availability, and juvenile ecology and food selectivity remain largely unknown. Here, the influence of water depth, coral abundance, colony shape, prey species, and intraspecific attraction among snails on distribution patterns, prey selection, and microhabitat use of D. cornus was studied in the northern Red Sea. Special emphasis was put on ontogenetic differences. The snails were most abundant in the shallowest reef zone (1 m depth). Adults were associated with several substrates and coral growth forms, whereas juveniles were highly cryptic and restricted to live branching corals. The genus Acropora was significantly preferred over other acroporid and pocilloporid corals. As revealed by resource selection ratios, Acropora acuminata was preferred by juveniles, A. selago by adults. In aquarium experiments, intraspecific attraction was high among both life stages. Overall, significant differences in juvenile and adult microhabitat and prey use suggest that juveniles have more specific habitat requirements, and indicate ecological impacts on coral communities different from that of adults. Prey preferences seem to depend on both coral genus and colony shape. Acropora corals provide the best combination of food and shelter and therefore determine distribution patterns of D. cornus.  相似文献   

9.
Despite the potential importance of predation as a process structuring coral reef fish communities, few studies have examined how the diet of piscivorous fish responds to fluctuations in the abundance of their prey. This study focused on two species of rock-cod, Cephalopholis cyanostigma (Valenciennes, 1828) and Cephalopholis boenak (Bloch, 1790) (Serranidae), and monitored their diet in two different habitats (patch and contiguous reef) at Lizard Island on the northern Great Barrier Reef, Australia, over a 2-year period. The abundance of the rock-cods and the abundance and family composition of their prey were monitored at the same time. Dietary information was largely collected from regurgitated samples, which represented approximately 60% of the prey consumed and were unbiased in composition. A laboratory experiment showed that fish were digested approximately four times faster than crustaceans, leading to gross overestimation of the importance of crustaceans in the diet. When this was taken into account fish were found to make up over 90% of the diet of both species. Prey fish of the family Apogonidae, followed by Pomacentridae and Clupeidae, dominated the diet of both species of rock-cod. The interacting effect of fluctuations in prey abundance and patterns of prey selection caused dietary composition to vary both temporally and spatially. Mid-water schooling prey belonging to the families Clupeidae and to a lesser extent Caesionidae were selected for over other families. In the absence of these types of prey, apogonids were selected for over the more reef-associated pomacentrids. A laboratory experiment supported the hypothesis that such patterns were mainly due to prey behaviour. Feeding rates of both species of rock-cod were much higher in summer than in winter, and in summer they concentrated on small recruit sized fish. However, there was little variation in feeding rates between habitats, despite apparent differences in prey abundance. In summary, our observations of how the feeding ecology of predatory fish responded to variation in prey abundance provide potential mechanisms for how predation may affect the community structure of coral reef fishes.  相似文献   

10.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

11.
Detailed information of fish diets is required if we are to understand complex interactions between species and successfully manage resources at an ecosystem level. We compiled diet information from 76 species of fish targeted by recreational and commercial fishers in North West Australia. Based on 81 independent studies we demonstrate that species targeted by the fishery are all carnivores, however the type of prey they consume and their trophic level is variable (3.31–4.49) and trophic range of some species spans different trophic levels (e.g. Lethrinus nebulosus, 3.46–4.35). These findings infer that in highly diverse systems, such as coral reefs, trophic cascades instigated by fishing must be investigated at the species, rather than functional or trophic level. Moreover, as prey availability is likely to vary spatially and temporally, diet must be quantified locally to assess ecosystem level impacts of fishing.  相似文献   

12.
The rapid growth of scleractinian corals is responsible for the persistence of coral reefs through time. Coral growth rates have declined over the past 30 years in the western Pacific, Indian, and North Atlantic Oceans. The spatial scale of this decline has led researchers to suggest that a global phenomenon like ocean acidification may be responsible. A multi-species inventory of coral growth from Pacific Panamá confirms that declines have occurred in some, but not all species. Linear extension declined significantly in the most important reef builder of the eastern tropical Pacific, Pocillopora damicornis, by nearly one-third from 1974 to 2006. The rate of decline in skeletal extension for P. damicornis from Pacific Panamá (0.9% year−1) was nearly identical to massive Porites in the Indo-Pacific over the past 20–30 years (0.89–1.23% year−1). The branching pocilloporid corals have shown an increased tolerance to recurrent thermal stress events in Panamá, but appear to be susceptible to acidification. In contrast, the massive pavonid corals have shown less tolerance to thermal stress, but may be less sensitive to acidification. These differing sensitivities will be a fundamental determinant of eastern tropical Pacific coral reef community structure with accelerating climate change that has implications for the future of reef communities worldwide.  相似文献   

13.
Dietary characteristics and the degree of dietary partitioning by five species of sympatric stingray were assessed using stomach content and sediment analyses within a coral reef lagoon at Ningaloo Reef, Western Australia (the cowtail Pastinachus atrus, blue‐spotted fantail Taeniura lymma, blue‐spotted mask Neotrygon kuhlii, porcupine Urogymnus asperrimus rays and the reticulate whipray Himantura uarnak). A total of 2804 items were recovered from the stomachs of 170 rays and 3215 individual taxa from the environment, which were used in selectivity analyses. Twenty‐four prey taxa were identified from stomach contents and pooled into 10 taxonomic categories for analysis, of which annelids, prawns, brachyurans and bivalves were the most abundant, together accounting for 96% of the diet. Himantura uarnak had the greatest interspecific dissimilarity in diet, consuming a larger proportion of crustaceans, notably penaeids (41% of total diet) than the other four species of rays, all of which had diets dominated by annelids (71–82% of total diet). Crustacean specialization by H. uarnak may exist to maximize resources and reduce competition among sympatric species. The remaining species may partition resources on the basis of space, rather than diet.  相似文献   

14.
Prey occurrence from stomach and fecal samples were compared in American martenMartes americana Turton, 1806, and fisherM. pennanti Erxleben, 1777. Diets were analyzed from stomach and fecal contents in four sex-age marten groups and four fisher groups, and dietary differences tested between species, sex, age and sample sources. Prey richness was compared between the two sample sources. Relative occurrence of dominant or co-dominant prey items did not differ between stomach and fecal samples in any of the groups. However, both series revealed inter-specific contrasts. Binomial correlations of prey occurrence between sample sources were significantly negative for most prey items. Correlations of prey richness between samples sources were not significant except in larger marten sample. Our results failed to reveal a bias in using fecal sample source. Thus we suggest that diet analyses using either sample source are valid when diets are assessed in a relatively large number of animals.  相似文献   

15.
Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star (Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46–96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3–4 species (6–8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.  相似文献   

16.
Temporal patterns are evaluated in Neogene reef coral assemblages from the Bocas del Toro Basin of Panama in order to understand how reef ecosystems respond to long-term environmental change. Analyses are based on a total of 1,702 zooxanthellate coral specimens collected from six coral-bearing units ranging in age from the earliest Late Miocene to the Early Pleistocene: (1) Valiente Formation (12–11 Ma), (2) Fish Hole Member of the Old Bank Formation (5.8–5.6 Ma), (3) La Gruta Member of the Isla Colon Formation (2.2–1.4 Ma), (4) Ground Creek Member of the Isla Colon Formation (2.2–1.4 Ma), (5) Mimitimbi Member of the Urracá Formation (1.2–0.8 Ma), and (6) Hill Point Member of the Urracá Formation (1.2–0.8 Ma). Over 100 coral species occur in the six units, with faunal assemblages ranging from less than 10% extant taxa (Valiente Formation) to over 85% extant taxa (Ground Creek Member). The collections provide new temporal constraints on the emergence of modern Caribbean reefs, with the La Gruta Member containing the earliest occurrence of large monospecific stands of the dominant Caribbean reef coral Acropora palmata, and the Urracá Formation containing the last fossil occurrences of 15 regionally extinct taxa. Canonical correspondence analysis of 41 Late Miocene to Recent reef coral assemblages from the Caribbean region suggests changes in community structure coincident with effective oceanic closure of the Central American Seaway (~3.5 Ma). These changes, including increased Acropora dominance, may have contributed to a protracted period of elevated extinction debt prior to the major peak in regional coral extinctions (~2–1 Ma).  相似文献   

17.
The purpose of the study was to define the diet composition, feeding preferences, seasonal, size and sex related changes in diet, feeding strategy and diel cycle of Economidichthys pygmaeus. Important features of the overall feeding patterns of the goby include (i) feeding activity, (ii) bottom habits and (iii) consumption of food items to identify the dietary breadth. Stomach contents of 533 specimens, 13.42–48.65 mm total length (TL), collected by hand net (2 mm mesh size) from October 2006 to September 2007 were analyzed. The percentage of 76 empty stomachs (14.26%) did not vary significantly with season. The food composition suggested that the goby is a carnivorous fish. Prey items identified in the stomachs belonged to four major groups: Crustaceans, Insects, Mollusca and Plants. Copepods were the most important (%IRI = 57.51), especially in fish larger than 23 mm TL. Chironomids (%IRI = 43.23) constituted the main prey for fish <23 mm TL. Diet composition showed little seasonal variation. Copepoda dominated the diet in autumn and winter (43.4%; 82.4%) and were replaced by Chironomidae larvae in spring (39.7%) and summer (47.7%). During the reproductive season, large males show a narrow food spectrum as opposed to large females, reflecting the different activity pattern exhibited by males and females during the breeding season, since the former supports parental care. According to the modified Costello graphical method, specialist individuals form the goby population that feeds on two preferential prey types (e.g. Copepods, Chironomids). Nevertheless, they consume some occasional prey (e.g. Cladocera, Insects, Gastropods). The species foraged chiefly at night and early morning, during lower light intensity. The highest feeding activity recorded at night (02.00 hours) and during early morning (08.00 hours) could be related to the cryptic behaviour displayed by the species.  相似文献   

18.
The diets of the most conspicuous reef‐fish species from northern Patagonia, the carnivorous species Pseudopercis semifasciata, Acanthistius patachonicus, Pinguipes brasilianus and Sebastes oculatus were studied. Pinguipes brasilianus had the narrowest diet and most specialized feeding strategy, preying mostly on reef‐dwelling organisms such as sea urchins, limpets, bivalves, crabs and polychaetes. The diet of A. patachonicus was characterized by the presence of reef and soft‐bottom benthic organisms, mainly polychaetes, crabs and fishes. Pseudopercis semifasciata showed the broadest spectrum of prey items, preying upon reef, soft‐bottom and transient organism (mainly fishes, cephalopods and crabs). All S. oculatus guts were empty, but stable‐isotope analyses suggested that this species consumed small fishes and crabs. In general, P. brasilianus depended on local prey populations and ate different reef‐dwelling prey than the other species. Pseudopercis semifasciata, A. patachonicus and probably S. oculatus, however, had overlapping trophic niches and consumed resources from adjacent environments. The latter probably reduces the importance of food as a limiting resource for these reef‐fish populations, facilitating their coexistence in spite of their high trophic overlap.  相似文献   

19.
Prey species of the deepwater squid Moroteuthis ingens were examined for 37 large specimens captured in New Zealand waters. Caecum contents were predominantly less than 80% full and covered a range of digestion stages. The diet consisted of fish (at least seven species, of which four were myctophids) and squid. The most abundant prey was the myctophid Lampanyctodes hectoris, which was represented by 1323 otoliths from 22 caeca. The second most abundant prey was viperfish (Chauliodus sloani) and/or dragonfish (Stomias boa), represented by 537 otoliths from 17 caeca. Individual squid appeared to ingest surprisingly large numbers of fish (up to 100) during a single feeding period and could achieve feeding rates greater than 10% of their body weight per day. While some males appeared to ingest larger numbers of L. hectoris, females targeted significantly larger individuals of L. hectoris thereby ingesting a greater biomass of fish. Received: 31 July 1997 / Accepted: 15 January 1998  相似文献   

20.
Prey selection by the flounder, Platichthys flesus (Linnaeus, 1758), in an estuarine nursery was investigated and the major factors influencing food choice by this species were assessed. Diet breadth was narrow, reflecting the low prey diversity observed in the benthos. A gradual ontogenetic shift from small prey such as amphipods to larger prey like polychaetes and bivalves was observed. Amphipods had positive electivity values in the upper estuary and negative values in the lower estuary.Polychaetes showed the inverse pattern. Bivalve electivity values were always positive. Differential selectivity throughout the estuary was mainly related to spatial segregation of flounders according to size, with the smaller individuals concentrating in the upper estuary and larger individuals concentrating in the lower estuary. Amphipods such as Corophium spp. play a crucial role in the flounder diet because of their small size, low mobility and diel activity pattern. As prey, the polychaete value increases throughout flounder ontogeny since the flounder size range is compatible with the larger mouth gapes and detection ability of larger fish. Bivalve electivity values for flounder are mainly related to high calorific values. The absence of Crangon crangon (Linnaeus, 1758) in the diet may be due to low water temperature since the cost–benefit involved in the capture of highly mobile prey is too high at low temperatures. It was concluded that flounder must use several sensory features to detect and capture prey in turbid estuarine waters and that field studies provide important background information on the actual predator preferences under natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号