首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The essential Saccharomyces cerevisiae pre-messenger RNA splicing protein 24 (Prp24) has four RNA recognition motifs (RRMs) and facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 is a component of the free U6 small nuclear ribonucleoprotein particle (snRNP) but not the U4/U6 bi-snRNP, and so is thought to be displaced from U6 by U4/U6 base-pairing. The interaction partners of each of the four RRMs of Prp24 and how these interactions direct U4/U6 pairing are not known. Here we report the crystal structure of the first three RRMs and the solution structure of the first two RRMs of Prp24. Strikingly, RRM 2 forms extensive inter-domain contacts with RRMs 1 and 3. These contacts occupy much of the canonical RNA-binding faces (beta-sheets) of RRMs 1 and 2, but leave the beta-sheet of RRM 3 exposed. Previously identified substitutions in Prp24 that suppress mutations in U4 and U6 spliceosomal RNAs cluster primarily in the beta-sheet of RRM 3, but also in a conserved loop of RRM 2. RNA binding assays and chemical shift mapping indicate that a large basic patch evident on the surface of RRMs 1 and 2 is part of a high affinity U6 RNA binding site. Our results suggest that Prp24 binds free U6 RNA primarily with RRMs 1 and 2, which may remodel the U6 secondary structure. The beta-sheet of RRM 3 then influences U4/U6 pairing through interaction with an unidentified ligand.  相似文献   

2.
Puan KJ  Wang H  Dairi T  Kuzuyama T  Morita CT 《FEBS letters》2005,579(17):3802-3806
Although flavodoxin I is indispensable for Escherichia coli growth, the exact pathway(s) where flavodoxin I is essential has not been identified. We performed transposon mutagenesis of the flavodoxin I gene, fldA, in an E. coli strain that expressed mevalonate pathway enzymes and that had a point mutation in the lytB gene of the MEP pathway resulting in the accumulation of (E)-4-hydroxy-3-methylbutyl-2-enyl pyrophosphate (HMBPP). Disruption of fldA abrogated mevalonate-independent growth and dramatically decreased HMBPP levels. The fldA- mutant grew with mevalonate indicating that the essential role of flavodoxin I under aerobic conditions is in the MEP pathway. Growth was restored by fldA complementation. Since GcpE (which synthesizes HMBPP) and LytB are iron-sulfur enzymes that require a reducing system for their activity, we propose that flavodoxin is essential for GcpE and possibly LytB activity. Thus, the essential role for flavodoxin I in E. coli is in the MEP pathway for isoprenoid biosynthesis.  相似文献   

3.
In the methylerythritol phosphate pathway for isoprenoid biosynthesis, the GcpE/IspG enzyme catalyzes the conversion of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate. This reaction requires a double one-electron transfer involving a [4Fe-4S] cluster. A thylakoid preparation from spinach chloroplasts was capable in the presence of light to act as sole electron donor for the plant GcpE Arabidopsis thaliana in the absence of any pyridine nucleotide. This is in sharp contrast with the bacterial Escherichia coli GcpE, which requires flavodoxin/flavodoxin reductase and NADPH as reducing system and represents the first proof that the electron flow from photosynthesis can directly act in phototrophic organisms as reducer in the 2-C-methyl-d-erythritol 4-phosphate pathway, most probably via ferredoxin, in the absence of any reducing cofactor. In the dark, the plant GcpE catalysis requires in addition of ferredoxin NADP(+)/ferredoxin oxido-reductase and NADPH as electron shuttle.  相似文献   

4.
Feeding tobacco BY-2 cells with [2-13C,4-2H]deoxyxylulose revealed from the 13C labeling that the plastid isoprenoids, synthesized via the MEP pathway, are essentially derived from the labeled precursor. The ca. 15% 2H retention observed in all isoprene units corresponds to the isopentenyl diphosphate (IPP)/dimethylallyl diphosphate (DMAPP) ratio (85:15) directly produced by the hydroxymethylbutenyl diphosphate reductase, the last enzyme of the MEP pathway. 2H retention characterizes the isoprene units derived from the DMAPP branch, whereas 2H loss represents the signature of the IPP branch. Taking into account the enantioselectivity of the reactions catalyzed by the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase, the IPP isomerase and the trans-prenyl transferase, a single biogenetic scheme allows to interpret all labeling patterns observed in bacteria or plants upon incubation with 2H labeled deoxyxylulose.  相似文献   

5.
Terpenoid precursor biosynthesis occurs in human and many pathogenic organisms via the mevalonate and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways, respectively. We determined the X-ray structure of the Fe/S containing (E)-4-hydroxy-3-methyl-but-2-enyl-diphosphate reductase (LytB) of the pathogenic protozoa Plasmodium falciparum which catalyzes the terminal step of the MEP pathway. The cloverleaf fold and the active site of P. falciparum LytB corresponds to those of the Aquifex aeolicus and Escherichia coli enzymes. Its distinct electron donor [2Fe–2S] ferredoxin was modeled to its binding site by docking calculations. The presented structural data provide a platform for a rational search of anti-malarian drugs.  相似文献   

6.
Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.  相似文献   

7.
A eukaryotic mevalonate pathway transferred and expressed in Escherichia coli, and a mammalian hydrocortisone biosynthetic pathway rebuilt in Saccharomyces cerevisiae are examples showing that transferring metabolic pathways from one organism to another can have a powerful impact on cell properties. In this study, we reconstructed the E. coli isoprenoid biosynthetic pathway in S. cerevisiae. Genes encoding the seven enzymatic steps of the pathway were cloned and expressed in S. cerevisiae. mRNA from the seven genes was detected, and the pathway was shown able to sustain growth of yeast in conditions of inhibition of its constitutive isoprenoid biosynthetic pathway.  相似文献   

8.
The apicoplast is a recently discovered, plastid-like organelle present in most apicomplexa. The methylerythritol phosphate (MEP) pathway involved in isoprenoid biosynthesis is one of the metabolic pathways associated with the apicoplast, and is a new promising therapeutic target in Plasmodium falciparum. Here, we check the presence of isoprenoid genes in four coccidian parasites according to genome database searches. Cryptosporidium parvum and C. hominis, which have no plastid genome, lack the MEP pathway. In contrast, gene expression studies suggest that this metabolic pathway is present in several development stages of Eimeria tenella and in tachyzoites of Toxoplasma gondii. We studied the potential of fosmidomycin, an antimalarial drug blocking the MEP pathway, to inhibit E. tenella and T. gondii growth in vitro. The drug was poorly effective even at high concentrations. Thus, both fosmidomycin sensitivity and isoprenoid metabolism differs substantially between apicomplexan species.  相似文献   

9.
Simon Hald  Dario Leister  Giles N. Johnson 《BBA》2008,1777(9):1173-1183
Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO2, non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high ΔpH to regulate photosynthesis.  相似文献   

10.
Electron transfer between plant-type [2Fe-2S] ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) depends on the physical interaction between both proteins. We have applied a random mutagenesis approach with subsequent in vivo selection using the yeast two-hybrid system to obtain mutants of Toxoplasma gondii FNR with higher affinity for Fd. One mutant showed a 10-fold enhanced binding using affinity chromatography on immobilized Fd. A single serine-to-arginine exchange in the active site was responsible for its increased affinity. The mutant reductase was also enzymatically inactive. Homology modeling of the mutant FNR-Fd complex predicts substantial alterations of protein-FAD interactions in the active site of the enzyme with subsequent structural changes. Collectively, for the first time a point mutation in this important class of enzymes is described which leads to greatly enhanced affinity for its protein ligand.  相似文献   

11.
In higher plants, two independent pathways are responsible for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central five-carbon precursors of all isoprenoids. The cytosolic pathway, which involves mevalonate (MVA) as a key intermediate, provides the precursor molecules for sterols, ubiquinone, and certain sesquiterpenes, whereas the plastidial MVA-independent pathway is involved in the formation of precursors for the biosynthesis of isoprene, monoterpenes, diterpenes, carotenoids, abscisic acid, and the side chains of chlorophylls, tocopherols, and plastoquinone. Recent experiments provided indirect evidence for the presence of an export system for isoprenoid intermediates from the plastids to the cytosol in Arabidopsis thaliana. Here we report that isolated chloroplasts (from spinach, kale, and Indian mustard), envelope membrane vesicles, and proteoliposomes prepared from the solubilized proteins of envelope membranes (from spinach) are capable of the efficient transport of isopentenyl diphosphate and geranyl diphosphate. Lower rates of transport were observed with the substrates farnesyl diphosphate and dimethylallyl diphosphate, whereas geranylgeranyl diphosphate and mevalonate were not transported with appreciable efficiency. Our data suggest that plastid membranes possess a unidirectional proton symport system for the export of specific isoprenoid intermediates involved in the metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis.  相似文献   

12.
The completion of the Plasmodium falciparum genome sequence has recently promoted the search for new antimalarial drugs. More specifically, metabolic pathways of the apicoplast, a key organelle for survival of the parasite, have been recognized as potential targets for the development of specific new antimalarial agents. As most apicomplexan parasites, P. falciparum displays a plant-type ferredoxin-NADP(+) reductase, yielding reduced ferredoxin for essential biosynthetic pathways in the apicoplast. Here we report a molecular, kinetic and ligand binding characterization of the recombinant ferredoxin-NADP(+) reductase from P. falciparum, in the light of current data available for plant ferredoxin-NADP(+) reductases. In parallel with the functional characterization, we describe the crystal structures of P. falciparum ferredoxin-NADP(+) reductase in free form and in complex with 2'-phospho-AMP (at 2.4 and 2.7 A resolution, respectively). The enzyme displays structural properties likely to be unique to plasmodial reductases. In particular, the two crystal structures highlight a covalent dimer, which relies on the oxidation of residue Cys99 in two opposing subunits, and a helix-coil transition that occurs in the NADP-binding domain, triggered by 2'-phospho-AMP binding. Studies in solution show that NADP(+), as well as 2'-phospho-AMP, promotes the formation of the disulfide-stabilized dimer. The isolated dimer is essentially inactive, but full activity is recovered upon disulfide reduction. The occurrence of residues unique to the plasmodial enzyme, and the discovery of specific conformational properties, highlight the NADP-binding domain of P. falciparum ferredoxin-NADP(+) reductase as particularly suited for the rational development of antimalarial compounds.  相似文献   

13.
14.
Beatrycze Nowicka 《BBA》2010,1797(9):1587-395
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K1, a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.  相似文献   

15.
The trans-polyisoprene compounds are synthesized by trans-isoprenyl diphosphate synthase (IDS) with consecutive condensation of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP). The in vitro condensation by IDS does not proceed efficiently by hydrophobic interaction between IDS and the hydrocarbon of longer products. In the present study, the enzymatic synthesis of trans-polyisoprenyl diphosphates was attempted in an organic-aqueous dual-liquid phase system with thermostable enzymes obtained from Thermococcus kodakaraensis. The conversion from DMAPP to a longer-chain product was achieved in a dual-liquid phase system, and more than 80% of the products were recovered in the organic phase. When the mutant IDS-Y81S, in which Tyr81 is replaced with Ser, was used in the dual-phase system, productivity was enhanced about four times and the ratio of the longer-chain products was increased. Co-incubation of IPP isomerase from T. kodakaraensis with IDS or IDS-Y81S enabled the direct synthesis of polyisoprenyl diphosphates from IPPs.  相似文献   

16.
Isoprenoid precursor biosynthesis occurs through the mevalonate or the methylerythritol phosphate (MEP) pathway, used i.e., by humans and by many human pathogens, respectively. In the MEP pathway, 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the iron-sulfur cluster enzyme HMBPP synthase (GcpE). The presented X-ray structure of the GcpE-MEcPP complex from Thermus thermophilus at 1.55 Å resolution provides valuable information about the catalytic mechanism and for rational inhibitor design. MEcPP binding inside the TIM-barrel funnel induces a 60° rotation of the [4Fe-4S] cluster containing domain onto the TIM-barrel entrance. The apical iron of the [4Fe-4S] cluster ligates with the C3 oxygen atom of MEcPP.  相似文献   

17.
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the “missing” GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.  相似文献   

18.
The unique beta-hydroxyacyl-ACP dehydratase in Plasmodium falciparum, PfFabZ, is involved in fatty acid biosynthesis and catalyzes the dehydration of beta-hydroxy fatty acids linked to acyl carrier protein. The structure was solved by single anomalous dispersion (SAD) phasing using a quick-soaking experiment with potassium iodide and refined to a resolution of 2.1 A. The crystal structure represents the first structure of a Plasmodium beta-hydroxyacyl-ACP dehydratase with broad substrate specificity. The asymmetric unit contains a hexamer that appears as a trimer of dimers. Each dimer shows the known "hot dog" fold that has been observed in only a few other protein structures. Each of the two independent active sites in the dimer is formed by equal contributions from both subunits. The active site is mainly hydrophobic and looks like an L-shaped tunnel. The catalytically important amino acids His 133 and Glu 147' (from the other subunit), together with His98', form the only hydrophilic site in this tunnel. The inner end of the active site tunnel is closed by the phenyl ring of Phe 169, which is located in a flexible, partly visible loop. In order to explain the acceptance of substrates longer than ~C-7, the phenyl ring must move away to open the tunnel. The present structure supports an enzymatic mechanism consisting of an elimination reaction catalyzed by His 133 and Glu147'. 3-decynoyl-N-acetylcysteamine, an inhibitor known to interact with the E. coli dehydratase/isomerase, turned out to interact covalently with PfFabZ. A first model of PfFabZ with this potent inhibitor is presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号