首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The respiration of spermatozoa of the sea urchin, Hemicentrotus pulcherrimus , was found to be sensitive to rotenone, antimycin A, and cyanide. This suggests that sperm respiration results from electron transport which spans the whole mitochondrial respiratory chain. The sperm respiration was inhibited by oligomycin and this inhibition was released by 2, 4-dinitrophenol (DNP). DNP did not stimulate the respiration of spermatozoa in a diluted suspension (2 × 108/ml), where they were swimming vigorously. The ADP level of spermatozoa in the diluted suspension was markedly higher than that in dry sperm. The spermatozoa, which had reacted with unfertilized eggs fixed with glutaraldehyde, were immotile with a quite low respiratory rate. The respiratory rate of the immotile spermatozoa was enhanced by DNP. In the immotile spermatozoa, ADP level was markedly low and the ATP level was as high as that in dry sperm. From these findings, it is concluded that in the swimming spermatozoa respiration coupled with oxidative phosphorylation occurs at the maximum rate. State 3 respiration probably occurs in the swimming spermatozoa. The low respiratory rate of the immotile spermatozoa is assumed to be due to a shortage of ADP and is practically regarded as state 4 respiration.  相似文献   

2.
Melittin, a Component of Bee Venom, Activates Unfertilized Sea Urchin Eggs   总被引:3,自引:3,他引:0  
Melittin, which is known to stimulate phospholipase A , in many cells, caused as much elevation of fertilization membranes and increase in respiration of unfertilized eggs of the sea urchins Anthocidaris crassispina and Hemicentrotus pulcherrimus as normal fertilization.
In melittin-activated eggs, amino acid transport was decreased to less than that of unfertilized eggs, nucleoside transport was only slightly, activated, protein synthesis was rather inhibited and neither DNA synthesis nor cleavage was observed. It is concluded that although melittin induces the cortical reaction and activation of respiration in unfertilized eggs, its cytotoxicity prevents any "late changes".  相似文献   

3.
The calcium antagonists diltiazem and verapamil at 100 μM caused considerable inhibition of the glycolysis system in recently fertilized eggs of the echiuroid, Urechis unicinctus . The levels of glycolytic intermediates in eggs were found to be higher 5 min after insemination than before fertilization while the levels of adenine nucleotides and inorganic phosphate were almost the same before and after fertilization. Addition of diltiazem or verapamil 30 sec after insemination did not inhibit fertilization, but resulted in maintenance of as low levels of glycolytic intermediates as in unfertilized eggs. The apparent mass action ratio in the phosphorylase step, calculated from the levles of glucose-1-phosphate and inorganic phosphate was normally higher in fertilized eggs than in unfertilized eggs, but was maintained at as low a level as in unfertilized eggs by adding these compounds 30 sec after insemination. Phosphorylase a activity also normally increased after insemination, but was maintained at a low level in fertilized eggs by adding these compounds. These compounds also inhibited the increased 45Ca2+ uptake normally observed after fertilization. These results suggest that after fertilization, the Ca2+ level increases associated with fertilization-induced Ca2+ influx and that this stimulates Ca2+ dependent protein kinase to phosphorylate phosphorylase b , resulting in an increased rate of the phosphorylase reaction.  相似文献   

4.
Pathways of electron transport utilized for respiration in human term placental mitochondrial preparations were differentiated and characterized through the use of classical respiratory chain inhibitors and multiple sources of reducing equivalents. Mechanisms of associated energy conservation and utilization were examined in the preparations with uncouplers and inhibitors of phosphorylation. Inhibition by rotenone, antimycin A and cyanide established the classical electron transport chain as the major pathway of respiration with glutamate and succinate as substrates. Approximately 20% of glutamate-supported respiration was insensitive to inhibitors and may proceed by the cytochrome P-450 linked pathway of electron transport. Approximately 50% of ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine supported respiration was insensitive to 10-3 M cycanide and must utilize an undefined by-pass of cytochrome oxidase. A rotenone- and antimycin-insensitive, exterior pathway for NADH oxidation was demonstrated which could be artificially linked by exogenous cytochrome c to the cytochrome oxidase region of the classical electron transport system. Glycerol 3-phosphate also supported oxidative phosphorylation yielding ADP/O ratios of 2. Respiration of placental mitochondria was stimulated by 2,4-dinitrophenol and gramicidin. With succinate, dinitrophenol-stimulated respiration exceeded that obtained in the presence of ADP. Oligomycin and atractyloside prevented the stimulation of respiration by ADP. Thus, respiration appeared coupled through normal mechanisms to ATP formation and ion transport. A preferential coupling of respiration to the energy-utilizing processes of steroid hormone biosynthesis may exist.  相似文献   

5.
In unfertilized eggs of the sea urchin, the quite low respiratory rate is enhanced by tetramethyl- p -phenylenediamine (TMPD), phenazine methosulfate (PMS) and sperm and this augmentation is completely inhibited by carbon monoxide (CO). Exposure to light releases eggs from this CO-mediated inhibition. The action spectra for photoreactivation of CO-inhibited cytochrome c oxidase in isolated mitochondria and CO-blocked respiration in TMPD-treated eggs were found to be similar to the absorption spectrum of CO-bound cytochrome aa 3. In PMS-treated eggs and fertilized eggs, the maximum photoreactivation of CO-inhibited respiration occurred at a light fluence rate higher than that for maximum photoreactivation of CO-inhibited respiration in TMPD-treated eggs, with peaks at the same wavelengths as those in the absorption spectrum of reduced cytochrome b. A similar phenomenon was seen for NADH cytochrome c reductase in mitochondria. Thus, cytochrome c oxidase and NADH cytochrome c reductase, whose activities are not altered by fertilization, seem to be functional, even in unfertilized eggs. In unfertilized eggs, difference spectra indicated that PMS and sperm augmented cytochrome b reduction and that TMPD accelerated cytochrome c reduction without cytochrome b reduction. Therefore, it is likely that depression of electron transport to cytochrome b , which is augmented by PMS and sperm, is responsible for the low respiratory rate in unfertilized eggs.  相似文献   

6.
Unfertilized eggs of the echiuroid, Urechis unicinctus , were activated by polyamines, such as putrescine, spermidine and spermine at concentrations above 10 μM. Fertilization membrane elevated and germinal vesicle disappeared in unfertilized eggs kept for several min in sea water containing these polyamines. Following the addition of these polyamines, a decrease of pH value in the egg suspension, occurred in a similar manner as observed following fertilization. Several sec after the addition of polyamines to the egg suspension, the respiratoy rate increased very slightly and the sensitivity of the respiration to 2, 4-dinitrophenol, which was lower in unfertilized eggs than in fertilized eggs, became as high as in fertilized ones. Irregular cleavage occurred in the eggs stimulated by polyamines. The incorporation of [3H]-deoxyadenosine into DNA was initiated by adding polyamines in the unfertilized eggs preloaded with the isotope. The rate of [3H]-leucine incorporation into protein in the preloaded unfertilized eggs was also enhanced by polyamines, in almost the same manner as observed following fertilization.  相似文献   

7.
Pathways of electron transport utilized for respiration in human term placental mitochondrial preparations were differentiated and characterized through the use of classical respiratory chain inhibitors and multiple sources of reducing equivalents. Mechanisms of associated energy conservation and utilization were examined in these preparations with uncouplers and inhibitors of phosphorylation.

Inhibition by rotenone, antimycin A and cyanide established the classical electron transport chain as the major pathway of respiration with glutamate and succinate as substrates. Approximately 20% of glutamate-supported respiration was insensitive to inhibitors and may proceed by the cytochrome P-450 linked pathway of electron transport. Approximately 50% of ascorbate-N,N,N′,N′-tetramethyl-p-phenylenediamine supported respiration was insensitive to 10−3 M cyanide and must utilize an undefined by-pass of cytochrome oxidase. A rotenone- and antimycin-insensitive, exterior pathway for NADH oxidation was demonstrated which could be artificially linked by exogenous cytochrome c to the cytochrome oxidase region of the classical electron transport system. Glycerol 3-phosphate also supported oxidative phosphorylation yielding ADP/O ratios of 2.

Respiration of placental mitochondria was stimulated by 2,4- dinitrophenol and gramicidin. With succinate, dinitrophenol-stimulated respiration exceeded that obtain-red in the presence of ADP. Oligomycin and atractyloside prevented the stimulation of respiration by ADP. Thus, respiration appeared coupled through normal mechanisms to ATP formation and ion transport. A preferential coupling of respiration to the energy-utilizing processes of steroid hormone biosynthesis may exist.  相似文献   


8.
Hartmut Wohlrab 《BBA》1977,462(1):102-112
Coupled respiration by blowfly mitochondria has been utilized to demonstrate an absolute divalent cation requirement for glycerol 3-phosphate respiration. With ADP, phosphate and EGTA, the respiration rate (state 3) decreases as a function of the amount of oxygen reduced, to approximately 15% of its maximum value, even at 40 mM dl-glycerol 3-phosphate; it can be increased to its maximum value by the addition of Ca2+, Sr2+ or Mn2+. The decline in state 3 rate is not due to the removal of membrane-bound calcium into the matrix by the calcium carrier, since it occurs in the presence of ruthenium red. The effect is energy-dependent since the state 3 respiration does not decrease in the presence of uncouplers. The increase in respiration upon the addition of calcium is not due to the energy-dependent calcium transport since it is sensitive to oligomycin and insensitive to ruthenium red.The divalent cation effector site is located on the glycerol-3-phosphate dehydrogense, since state 3 (or state 4) pyruvate-proline respiration (NAD-linked) is not affected by EGTA. Yet the state 3 pyruvate-proline respiration removes calcium so effectively from the glycerol-3-phosphate dehydrogenase in the presence of EGTA, that added calcium stimulates glycerol 3-phosphate (26.4 mM) respiration about 22-fold.Since uncouplers stimulate the inhibited glycerol 3-phosphate respiration only to a very small extent, a calcium stimulation of the rate of phenazine methosulfate reduction by glycerol 3-phosphate (26.4 mM) which bypasses all phosphorylation sites, should be detectable. Only a 3-fold stimulation was observed.The present experiments suggest that upon complete removal of divalent cations from the dehydrogenase, glycerol 3-phosphate does not act as a homotropic effector in the coenzyme Q reductase reaction.  相似文献   

9.
The oxidation of malate and citrate by isolated plant mitochondria can be stimulated by the addition of inorganic phosphate. This stimulation (a) is not inhibited by oligomycin or uncouplers; (b) can not be duplicated by addition of adenine nucleotide; (c) is inhibited by 2-n-butylmalonate; and (d) is not evident in detergent-treated mitochondria. Phosphate was required to elicit uncoupler-stimulated respiration. It is concluded that these effects of phosphate are attributable to a stimulated rate of substrate penetration into the mitochondria, and do not involve the oxidative phosphorylation process.  相似文献   

10.
Spermatozoa of the sea urchin, Hemicentrotus pulcherrimus (108 cells/ml), preincubated with unfertilized eggs deprived of jelly coats (more than l05 cells/ml) at 20°C for 20min in Mg2+ free artificial sea water containing 1 mM Ca2+ (MFASW), exhibited very low respiration, which was enhanced by 2, 4 dinitrophenol (DNP). The fertilization rate in MFASW was usually less than 5% and was about 25% at most. Preincubation with fertilized eggs (with and without a fertilization membrane) in MFASW did not reduced the respiratory rate of spermatozoa. The rate of sperm respiration was lower in MFASW than in artificial sea water (ASW), but was higher than the respiratory rate of spermatozoa preincubated in MFASW with unfertilized eggs. Sperm respiration in MFASW or in ASW was not stimulated by 2, 4 dinitrophenol. Almost complete inhibition of sperm respiration was obtained with unfertilized eggs fixed with glutaraldehyde at concentrations of above 105 cells/ml in MFASW and of about l04 cells/ml in ASW. The respiratory rate of spermatozoa treated with fixed eggs was enhanced by DNP. It is concluded that the respiratory rate of the spermatozoa is reduced by their interaction with unfertilized eggs before their penetration into the eggs.  相似文献   

11.
Rat glioma cells grown in culture secrete cyclic adenosine 3':5'-monophosphate (cyclic AMP) into the culture medium following stimulation by beta-agonistic catecholamines. Agents which reduced cellular ATP levels such as valinomycin, oligomycin, and uncouplers of oxidative phosphorylation, inhibited cyclic AMP efflux. Secretion of cyclic AMP was also prevented by prostaglandin A-1 and pharmacological agents including probenecid and papaverine. Of the latter agents, only papaverine reduced ATP levels. These results suggest that the transport of cyclic AMP across animal cell membranes is energy-dependent and subject to regulation.  相似文献   

12.
Tissue specificity of mitochondrial respiration stimulation under the effect of a soluble phase of liver cells (SPC) is preserved by addition to dinitrophenol but is reserved in the presence of oligomycin. Addition of rotenon in the presence of SPC entails a tissue-specific increase in respiration that is proportional to the respective increase in respiration of intact mitochondria in the presence of the inhibitor mentioned. SPC tissue-specifically inhibits ATPase activity of liver mitochondria. This fraction of SPC is capable of recovering the coupling of oxidative phosphorylation of mitochondria whose respiration is inhibited by adding ADP. A conclusion is made that SPC is capable not only to decrease tissue-specifically the coupling of intact mitochondria but also to raise it in mitochondria with deranged oxidative phosphorylation. This assures intratissue organization of liver metabolism by means of tissue-specific stabilization of liver cell energy metabolism.  相似文献   

13.
Prosthecae removed from cells of Asticcacaulis biprosthecum were examined for their ability to accumulate proline, alanine, aspartate, glutamate, and glucose against a concentration gradient. The transport of all of these compounds into prosthecae was stimulated by the nonphysiological electron donors phenazine methosulfate and N,N,N',N'-tetramethyl-p-phenylene diamine dihydrochloride. Reduced pyridine nucleotides caused very slight stimulation of transport of proline and glucose. Other physiological electron donors did not stimulate uptake. Evidence is presented indicating that the failure of certain potential electron donors to drive respiratory chain-linked transport is due to the inabilityof these compounds to enter prosthecae rather than to the absence of enzymes for their oxidation in prosthecae. Inhibition of respiration and uncouplers of oxidative phosphorylation, with the exception of arsenate, inhibit active transport systems of prosthecae.  相似文献   

14.
A series of uncouplers and inhibitors of oxidative phosphorylation have been studied with regard to their effect on the hydrolytic activity of the reduced and oxidized forms of isolated or membrane-bound mitochondrial ATPase. Uncouplers (2,4-dinitrophenol, dicoumarol), which are also activators of the hydrolytic activity of ATPase, were more potent activators on the oxidized form of the enzyme. Inhibitors of oxidative phosphorylation (oligomycin, azide and amytal) had a more potent inhibitory effect on the hydrolytic activity of ATPase in its reduced form. Purified F1-ATPase, oligomycin insensitive in the oxidized form of the enzyme, became sensitive to oligomycin in the reduced form. An interpretation of the results suggests the presence of a mechanism that unifies the action of these different compounds on the synthesis and hydrolysis of ATP catalyzed by mitochondrial ATPase.  相似文献   

15.
G.D.V. Van Rossum 《BBA》1976,423(1):111-121
1. In slices of rat liver, oligomycin inhibited the net transport of Na+ and K+ by a maximum of 30% and endogenous respiration by 25%. These effects were not increased by a number of modifications in the incubation conditions.2. Mitochondria isolated from the slices after incubation showed respiratory control ratios that were somewhat less than in mitochondria from fresh liver, but state 3 respiration retained normal sensitivity to oligomycin.3. Low concentrations of oligomycin or cyanide reduced respiration and ATP levels of the slices but did not affect ion transport unless these levels fell below a definite critical value. In contrast, ouabain and atractyloside each caused substantial degrees of transport inhibition at ATP levels which were in excess of the critical value.4. High concentrations of cyanide and oligomycin reduced ATP contents maximally by 90% and 65%, respectively. Studies of lactate production, and of the effects of arsenite on respiration and ATP levels, suggested that substrate-level phosphorylation in the citric-acid cycle was the major source of the oligomycin-resistant ATP synthesis.5. The results suggest that oligomycin acts in the liver slices primarily as an inhibitor of oxidative phosphorylation, and that this is the cause of the partial inhibition of ion transport. The oligomycin-resistant ion-transporting activity is consistent with the persisting level of ATP synthesis.  相似文献   

16.
1. Iodoacetate and fluoride did not prevent the development of respiration in aerobically grown yeast. 2. The effect of dinitrophenol suggested that phosphorylation developed simultaneously with respiration in anaerobically grown yeast, but the effect of oligomycin suggested that the phosphorylation and oxidation were not tightly coupled. 3. Inhibitors of electron transport showed that both the respiratory peak and the subsequent respiration were cyanide-sensitive, but the peak respiration was insensitive to antimycin. 4. Of the inhibitors of protein or RNA synthesis tested, only p-fluorophenylalanine inhibited the development of respiration. The results are not consistent with a new synthesis of mitochondria. 5. 2-Phenylethanol inhibited the development of respiration in anaerobically grown yeast and also yeast growth. Other inhibitors of DNA synthesis had no effect on the development of respiration. 6. The relevance of the results to mitochondrial morphogenesis is discussed.  相似文献   

17.
A study is presented of the effect of acidic uncouplers and oligomycin on energy-linked and passive proton translocation, oxidative phosphorylation, and energy-linked nicotinamide-adenine-nucleotide transhydrogenase in EDTA submitochondrial particles from beef-heart. A flow potentiometric technique has been applied to resolve the kinetics of the initial rapid phase of the redox proton pump. Rapid kinetics analysis shows that carbonyl-cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) does not exert any direct effect on redox-linked active proton transport. The uncoupling action of FCCP on oxidative phosphorylation and energy-linked transhydrogenase is shown to be quantitatively accounted for by its promoting effect of passive proton-diffusion across the mitochondrial membrane. Oligomycin depresses passive proton diffusion in EDTA sonic particles and this effect accounts for the coupling action exerted by the antibiotic on oxidative phosphorylation and energy-linked transhydrogenase. In fact, rapid kinetic analysis demonstrates that oligomycin does not directly affect the redox-linked proton pump. The present results show that there does not exist any labile intermediate in the redox-linked proton pump which is sensitive to acidic uncouplers.  相似文献   

18.
During early development of the sea urchin, the respiratory rate, enhanced upon fertilization, is maintained up to hatching (pre-hatching period) and then gradually increases to a maximum at the gastrula stage (post-gastrula period). Except for a short duration after fertilization, respiration in embryos is strongly inhibited by CN and antimycin A. During the whole span of early development, the amounts of proteins, cytochromes and the specific activities of cytochrome c oxidase and reduced nicotinamide adenine dinucleotide (NADH) cytochrome c reductase in mitochondria are practically the same as in unfertilized eggs. A marked augmentation of mitochondrial respiration after hatching probably occurs without net increase in whole mitochondrial intrinsic capacities. Carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) or tetramethyl p-phenylenediamine (TMPD) enhances the respiratory rate in the pre-hatching period but hardly augments the respiration in the post-gastrula period. In the presence of both FCCP and TMPD, the respiratory rate in the pre-hatching period was as high as in the post-gastrula period. Probably, electron transport in the mitochondrial respiratory chain is regulated by acceptor control and limitation of cytochrome c reduction in the pre-hatching period and released from those regulations in the post-gastrula period. Acceptor control of respiration is experimentally reproduced in isolated mitochondria by making adenine nucleotide levels as those levels in the pre-hatching period.  相似文献   

19.
Respiration in Blue-Green Algae   总被引:13,自引:3,他引:10       下载免费PDF全文
The low rate of endogenous respiration exhibited by the blue-green algae Anacystis nidulans and Phormidium luridum was not increased by the addition of respiratory substrates. However, endogenous respiration was inhibited by low concentrations of cyanide and by high carbon monoxide tensions. In addition, the uncouplers dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone both stimulated the respiratory rate. The transition of cells from the aerobic steady state to anaerobiosis was accompanied by a decrease in the concentration of cellular nicotinamide adenine dinucleotide phosphate (NADP(+)) and adenosine triphosphate (ATP), whereas the concentration of nicotinamide adenine dinucleotide (NAD(+)) was unchanged. Concomitant with the metabolite decreases were stoichiometric increases io reduced NADP(+) (NADPH), adenosine diphosphate, and adenosine monophosphate. A decrease in ATP was also observed after the addition of uncouplers. These data are interpreted as evidence for the association of oxidative phosphorylation with the oxidation of NADP(+)-linked substrates in these algae. Membrane fragments isolated from the algal cells oxidized succinate, malate, ferrocytochrome c, ascorbate-tetramethyl-p-phenylenediamine, and reduced 2,6-dichlorophenol indophenol but did not oxidize NADPH or reduced NAD(+) in a cyanide-sensitive system. Oxidative phosphorylation has not yet been demonstrated in these fragments, but a dark ATP-P(i) exchange, distinct from the lighttriggered exchange associated with photosynthesis, is readily observed. This exchange was inhibited by phloridzin, Atabrine, and uncouplers in concentrations which suggest that the mechanism of oxidative phosphorylation in blue-green algae is different from that found in other bacteria and in mitochondria. These results led to the conclusion that the biochemical basis for obligate autotrophy in these organisms does not lie in the metabolic events associated with terminal electron transport and energy conservation.  相似文献   

20.
A negative correlation between oxygen consumption and fertility was observed in both steelhead and chinook salmon eggs. However, this relationship was attributed to bacterial growth. Elimination of samples with bacterial growth resulted in no significant relationship between the rate of oxygen consumption (VO2) and fertility. VO2 of unfertilized eggs of both steelhead and chinook salmon was measured over a storage period of up to 24 days (d). Despite declines in fertility during storage, VO2 did not significantly change throughout storage. The average respiration rate for steelhead eggs was 3.4 nmol O2 per egg per h, and was 4.3 nmol O2 per egg per h for chinook salmon eggs. Treatment of chinook salmon eggs with uncouplers of mitochondrial respiration, 2,4-dinitrophenol (2,4-DNP) and carbonyl cyanide 4-trifluoro-methoxyphenylhydrazone (FCCP), resulted in an increase in VO2 to 12.9 and 11.5 nmol O2 per egg per h, respectively. Treatment with the putative uncoupler, clove oil, resulted in no change in VO2, while KCN, an inhibitor of oxidative phosphorylation, reduced oxygen consumption to zero. Copper caused an increase in oxygen consumption, even in the absence of eggs, suggesting a need for caution in interpreting changes in respiration rates as a result of metal exposure. Thus, unfertilized salmonid eggs demonstrated submaximal VO2, which was not correlated with fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号