首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation pathway of 2-acetylaminofluorene (AAF) to N-hydroxy-2-amino-fluorene (N-OH-AF), a potent mutagen to Salmonella, by guinea pig liver postmitochondrial supernatant fraction (S-9 fraction) was studied. 2-Aminofluorene (AF), as well as N-hydroxy-2-acetylaminofluorene (N-OH-AAF, Takeishi et al., Mutation Res. in press), was detected as a metabolite of AAF. The mutagenicities of AF and N-OH-AAF comparable to that of AAF were inhibited by antiserum against NADPH-cytochrome c reductase and by paraoxon, respectively. These data indicate that in the mutagenic activation of AAF, N-OH-AF can be produced by both N-hydroxylation of AF and deacetylation of N-OH-AAF. Furthermore, the data on the relative contribution of paraoxon-sensitive activation pathway to mutagenicities of AAF and N-OH-AAF led to a conclusion that deacetylation of AAF followed by N-hydroxylation to produce N-OH-AF is the main pathway for the mutagenic activation of AAF by guinea pig liver S-9 fraction.  相似文献   

2.
A mouse MOPC21 cDNA previously cloned in plasmid pMB9(Higuchi etal., Proc. Natl. Acad. Sci. 73 (1976) 2136–2140; Wall etal., Nucleic Acid Res. 5 (1978) 3113–3128) and is designated pL21-3 has been extensively characterized. Cleavage of pL21-3 with Hpall has shown the insert to be 910 basepairs long, consistent with the length of the entire variable and constant regions and the untranslated regions. Digestion of pL21-3 with various restriction endonucleases has established that the insert sequence starts from parts of the 5′ leader region and extends downstream to include the untranslated 3′ terminus. 131 nucleotides in the variable region corresponding to amino acids 49–91 have been determined.  相似文献   

3.
The regulation of the synthesis of trp operon enzymes was studied in streptomycin-resistant Escherichiacoli mutants temperature-sensitive for UGA suppression by normal tRNATrp. Our mutants carry a trpR+ allele that when transferred to a different genetic background causes repression of trp operon enzyme synthesis at both low (35°C) and high (42°C) temperatures; however, in our mutants with an excess of tryptophan and at increased temperatures trp enzyme synthesis is derepressed. Based on our results and the sequence data of the trpR gene [Singleton et al. (1980) Nucleic Acids Res., 8, 1551–1560], we offer a model for the involvement of the limited misreading of UGA codons by normal charged tRNATrp in the autogenous regulation of the trpR gene expression. The UGA readthrough process may be a regulatory amplifier of the effect of tryptophan starvation.  相似文献   

4.
The primary nucleotide sequence was reported earlier for U1 RNA (Reddy et al, (1974) J. Biol. Chem. 249, 6486–6494), an snRNA implicated in splicing of HnRNAs. In view of the presence of homologous pseudouridine (ψ) residues in 5′-ends of several highly conserved U-snRNAs and the recent report of modified bases in the U1 RNA structure (Branlant et al, (1980) Nucleic Acids Res. 8, 4143–4154) a study was made for the presence of ψ and other modified nucleotides in the 5′-end of the U1 RNA. Identification of ψ residues at positions 6 and 7, shows the 5′-sequence of U1 RNA is: m32, 2,7 GpppAm-Um-A-C-ψ-ψ-A-C-C-U-G-G-C-A-G-G-G-G-A-G-A-U-A-C. The ψ residues in place of U at positions 6 and 7 may affect the binding of U1 RNA at intron-exon splice junctions.  相似文献   

5.
Previous results (Castagna et al. (1979) FEBS Lett. 100, 62–66; Fisher et al. (1979) Biochem. Biophys. Res. Commun. 86, 1063–1068) indicated us that the active tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) decreased fluorescence polarisation of diphenylhexatriene in lymphoblastoid and rat embryo cells. In the present study, experiments aimed at examining the molecular interactions of tumor promoters with cell membrane components are performed with fully hydrated multibilayers of 1,2-diacyl-sn-glycero-3-phosphocholine (DPPC) into which increasing amounts of TPA are inserted. The thermotropic behaviour of both the phospholipid bilayers and the interbilayer water was investigated using the differential scanning calorimetry (DSC) and the approach of Ter-Minassian-Saraga et al. ((1982) J. Colloïd Interface Sci. 81, 369–383). The major effects of the tumor promoter are confined to concentrations up to 20% mol fractions of TPA. In this range of concentrations the incorporation of TPA into liposomes decreases the phase-transition temperature but dit not affect ΔHDPPC. Furthermore TPA increases the hydration of the multibilayers. Above 20% mol fractions of TPA, a different thermal behaviour of the system which might suggest morphological rearrangements was observed. The lipid state in TPA-treated liposomes was monitored by fluorescence polarisation using diphenylhexatriene as a lipophilic fluorescent probe and the phase-transition temperature was calculated. The phase transition temperatures determined by both methods were in good agreement. The lowering of this temperature and the decay of fluorescence anisotropy of diphenylhexatriene were parallel. Those effects are consistent with the ‘fluidising’ effect of TPA on DPPC.  相似文献   

6.
Evidence for a new activator of rat liver phosphofructokinase   总被引:4,自引:0,他引:4  
A low molecular weight compound that activates purified rat liver phosphofructokinase has been isolated and partially purified from rat hepatocyte extracts. It can be separated from both fructose bisphosphate and AMP on DEAE-Sephadex. Incubation of rat hepatocytes with glucagon lowers the level of this activator, and this accounts for the inhibition of phosphofructokinase that was observed in hepatocyte extracts (S. Pilkis, et al. (1979) Biochem. Biophys. Res. Commun. 88, 960–967). Other characteristics of this activator are described which suggest that it is not any of the known effectors of rat liver phosphofructokinase.  相似文献   

7.
The outer membrane of Gram-negative bacteria contains (a) “porin” proteins that form transmembrane channels and allow diffusion of various hydrophilic, small molecules (Nakae, J. Biol. Chem., 251, 2176–2178, 1976), and (b) proteins which catalyze the specific transport of unique classes of compounds, e.g. the λ-receptor protein facilitates the diffusion of maltose and maltotriose (Szmelcman et al., Eur. J. Biochem., 65, 13–19, 1976). When strains of Escherichia coli, Br and K-12 containing the λ-receptor but not porin were constructed and compared with those containing neither of them, it was found that in the former strains the transmembrane diffusion of glucose and lactose, but not of histidine and 6-aminopenicillanic acid, was significantly accelerated. These results suggest that λ-receptor may facilitate the diffusion of sugars other than maltose.  相似文献   

8.
D A Haber  W G Thilly 《Life sciences》1978,22(18):1663-1673
Morphological transformation in C3H/10T12 cells treated with varied concentrations of benzo (α) pyrene (BP) was measured following subculture at low cell densities. Subconfluent cultures exposed to BP were allowed to grow to confluence, trypsinized, and reseeded at cell densities ranging from 5 to 2,300 surviving cells/cm2. These secondary cultures were incubated for 8 to 9 weeks, stained, and examined for evidence of morphological transformation. BP-treated cells reseeded in virtual isolation in microwells (approx. 5 surviving cells/cm2) transformed at frequencies up to 14.5%. At these low initial cell densities, transformation frequency did not demonstrate a significant dependence on BP concentration. However, BP-treated cells reseeded at higher densities (11 to 2,300 surviving cells/cm2) showed both density-dependent transformation frequencies and BP-concentration dependence of transformation. As reported previously (Haber et al., Cancer Res. 37 1644, 1977), the subculturing of treated cells did not affect the BP-concentration dependence of focus formation in the C3H/10T12 transformation assay. Cell density-dependent suppression of morphological transformation has now been observed over a wide range of BP concentration. We suggest that this phenomenon is associated with colony interactions and consider various possible mechanisms of BP involvement.  相似文献   

9.
Photoaffinity labelling of tryptic and chymotryptic heavy meromyosin with 3′O-3-[N-(4-azido-2-nitrophenyl) amino]propionyl-adenosine 5′-triphosphate (arylazido-β-alanine ATP) resulted in incorporation of radioactivity and inhibition of the ATPase activity. ATP prevented the reaction with the photoaffinity label, as shown by the lack of incorporation of 3H and intact ATPase activity. On the tryptic digestion of either type of photoaffinity labeled HMM the label was found in a 25K peptide identifiable with the N-terminus of the myosin heavy chain (Lu et al., Fed. Proc. 37 1695 1978). The results are discussed in the light of previous localization of the reactive thiol groups, SH-1 and SH-2 (Balint et al., Arch. Biochem. Biophys. 190, 793 1978).  相似文献   

10.
The values reported in the literature for the extramitochondrial ATPADP ratio in resting rat-liver mitochondria (State 4) vary widely. The conditions required for an accurate determination of this parameter were therefore investigated. (1) In experiments with rat-liver mitochondria incubated under State-4 conditions, it was found that the extramitochondrial ATPADP ratio, as calculated from the values measured in neutralised perchloric acid extracts, was lower than that estimated from the concentrations of creatine and creatine phosphate, using the metabolite indicator method. The discrepancy is due to hydrolysis of ATP occurring in the presence of perchloric acid. (2) Conditions are described for minimising ATP hydrolysis in the presence of perchloric acid, and include the use of low concentrations of perchloric acid, short times of exposure to the acid before neutralisation, low temperatures and the presence of excess EDTA. Under these conditions, the values obtained for the extramitochondrial ATPADP ratio agreed with those calculated by the metabolite indicator method, provided ratios do not exceed the value of 100. (3) In cases where the extramitochondrial ATPADP does exceed 100, phenol/chloroform/isoamyl alcohol must be used to quench the reactions, as described by Slater et al. (Slater, E.C., Rosing, J. and Mol, A. (1973) Biochim. Biophys. Acta 292, 534–553). With this method, the extramitochondrial ATPADP ratio was found to have a value of more than 1000 in rat-liver mitochondria incubated with succinate + rotenone in the resting state (pH 7.0; T = 37°C), in agreement with Slater et al.  相似文献   

11.
Among the polyamines tested, spermine strongly inhibited the growth of Saccharomyces cerevisiae DKD-5D-H. Two kinds of DNA fragments that confer strong and weak resistances to spermine were cloned onto a vector plasmid, YEp13. The restriction map of the DNA fragment conferring strong resistance was the same as that of a DNA fragment responsible for ethionine resistance in the same yeast cells. (Shiomi et al., Appl. Microbiol. Biotechnol., 29, 302–304, 1988) The yeast cells with the DNA fragment conferring strong resistance to spermine were resistant to ethionine and accumulated S-adenosyl-l-methionine intracellularly.  相似文献   

12.
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. The acridine orange-iodoCpG2 crystals are monoclinic, space group P21, with unit cell dimensions a = 14.36 A?, b = 19.64 A?, c = 20.67 A?, β = 102.5 °. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A?, b = 22.23 A?, c = 18.42 A?, β = 123.3 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.Acridine orange forms an intercalative structure with iodoCpG in much the same manner as ethidium, ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium (Jain et al., 1977, Jain et al., 1979), except that the acridine nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus and is similar to that observed with the 9-aminoacridine-iodoCpG asymmetric intercalative binding mode described in the previous papers (Sakore et al., 1977, Sakore et al., 1979). Basepairs above and below the drug are separated by about 6.8 Å and are twisted about 10 °; this reflects the mixed sugar puckering pattern observed in the sugar-phospate chains: C3′ endo (3′–5′) C2′ endo (i.e. each cytidine residue has a C3′ endo sugar comformation, while each guanosine residue has a C2′ endo sugar conformation), alterations in glycosidic torsional angles and other small but significant conformational changes in the sugar-phosphate backbone.Proflavine, on the other hand, demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino groups on proflavine with phosphate oxygen atoms on the dinucleotide. In contrast to the acridine orange structure, base-pairs above and below the intercalative proflavine molecule are twisted about 36 °. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed: C3′ endo (3′–5′) C3′ endo. Since proflavine is known to unwind DNA in much the same manner as ethidium and acridine orange (Waring, 1970), one cannot use the information from this model system to understand how proflavine binds to DNA (it is possible, for example, that hydrogen bonding observed between proflavine and iodoCpG alters the intercalative geometry in this model system).Instead, we propose a model for proflavine-DNA binding in which proflavine lies asymmetrically in the intercalation site (characterized by the C3′ endo (3′–5′) C2′ endo mixed sugar puckering pattern) and forms only one hydrogen bond to a neighboring phosphate oxygen atom. Our model for proflavine-DNA binding, therefore, is very similar to our acridine orange-DNA binding model. We will describe these models in detail in this paper.  相似文献   

13.
cDNA segments copied from the RNA of foot-and-mouth disease virus (FMDV) C1-Santa Pau (isolate C-S8) have been cloned in plasmid pBR322. A 998-bp DNA fragment, that includes the region coding for capsid protein VP1, the carboxy terminus of VP3, and the amino terminus of precursor protein p52 has been sequenced. Comparison of the nucleotide sequence with those from FMDV O1K, A1061, a12 and C3 Indaial (Kurz et al., Nucl. Acids Res. 9 (1981) 1919–1931; Kleid et al., Science 214 (1981) 1125–1129; Boothroyd et al., Gene 17 (1982) 153–161; Makoff et al., Nucl. Acids Res. 10 (1982) 8285–8295) indicates extensive variability between the corresponding gene segments, including short insertions and deletions. Base transversions are more frequent than transitions within the VP1 coding segment, but not in the sequence coding for the amino-terminal end of p52. The nucleotide sequence divergence is reflected in variability in both the primary and the predicted higher-order structures of the encoded VP1s.  相似文献   

14.
The heat-labile inhibitor of casein kinases 1 and 2 from rat liver cytosol (J.F. Bertomeu et al., FEBS Lett., 124, 262–264) has been purified extensively and characterized. Analysis by gel filtration and SDS-polyacrylamide gel electrophoresis suggest that the inhibitor has an Mr of 30,000. It did not contain glycosaminoglycans, oligonucleotides or neutral sugars and was totally inactivated by digestion with trypsin. Besides casein kinases, the inhibitor also inhibited the catalytic subunit of cAMP-dependent protein kinase to the same extent. The data suggest that the inhibitor is a monomeric protein that could modulate intracellular protein phosphorylation by both casein kinases and cAMP-dependent protein kinase.  相似文献   

15.
Marihuana and hashish are the most widely used illicit drugs. They are derived from the hemp plant, Cannabis sativa. Among the diverse chemicals in the plant, more than 20 so-called cannabinoids have been isolated and their chemical structures elucidated (1). In 1965, Mechoulam and coworkers (2,3) isolated △9- tetrahydrocannabinol (△9-THC) from cannabis extract and demonstrated that it was responsible for the psychopharmacologic effects of cannabis in animals. Later, Isbell (4) and Hollister et al. (5) confirmed these findings in man. This paper reviews the physiologic disposition of △9-THC in man; the disposition of △9-THC in animals has been reviewed elsewhere (6, 7, 8).  相似文献   

16.
Oxidative phosphorylation, active transport of proline, aerobic- and ATP-driven proton translocation and transhydrogenation of NADP+ by NADH, occurred in lipoic acid-deficient cells or vesicles of a lipoic acid auxotroph of E. coli, W1485 lip 2. Addition of lipoic acid had little effect on these processes. Tributyltin chloride, which has been proposed to inhibit oxidative phosphorylation by reaction with lipoic acid (Cain et al., Biochem. J. (1977) 166, 593), was an effective inhibitor of aerobic and ATP-dependent proton translocation and transhydrogenation in lipoic acid-deficient vesicles from this organism. Our results do not support the proposal of Partis et al. (FEBS Lett. (1977) 75, 47) that lipoic acid is involved in the energy transducing processes associated with the membrane of E. coli.  相似文献   

17.
Giant T4 bacteriophage were found by Doermann et al. (1973a) with point mutants in gene 23 and by Cummings et al. (1973) after l-canavanine induction followed by an arginine chase. We now find T4 giant phage with 14 out of 15 tested temperature-sensitive mutants in gene 24 grown at intermediate temperatures between 33 °C and 37 °C.For one of these mutants, T4,24(tsB86), we found that (a) the optimum temperature for giant phage production is 34.8 °C, (b) the head-length distribution peaks sharply between 10 and 12 normal T4 phage head lengths, (c) about 75% of our giant phage have two tails, (d) the buoyant density in CsCl is greater than that of normal phage, (e) they are infectious and show an increased u.v. resistance, (f) their sodium dodecyl sulphate gel electrophoresis pattern is qualitatively similar to that of normal T4 phage, although the relative intensities of some of the bands are different, showing for example, a decreased P241P2312 ratio, (g) optical diffraction and filtering of the flattened cylindrical part of the giant heads show a p6 surface net with a lattice constant of approximately 130 Å, a unique uv ratio of 155 and a capsomer morphology of the type 1 + 6 + 6.Mixed infections with T4 wild type and T4.24(amN65) also yield giant phage. These are produced in highest amounts with a multiplicity of infection ratio of 5:5; no giants are observed at ratios of 1:9 or 9:1, suggesting that their formation may be caused by a dosage effect of P24.  相似文献   

18.
Recent work (Hizi and Yagil [1974] Eur. J. Biochem. 45: 211–221, and Kelly et. al. [1975] Fed. Proc. 34: 881) suggests that the marked increase in rat liver glucose-6-phosphate dehydrogenase activity which is observed upon feeding an animal a high carbohydrate diet does not involve an increase in the total amount of enzyme present. In contrast, the data presented herein involving immunological titrations of rat liver glucose-6-phosphate dehydrogenase indicates that the increase in enzyme activity resulting from feeding a high carbohydrate diet does involve an increase in the total amount of enzyme present.  相似文献   

19.
20.
The Raman spectrum (441.6 nm excitation) of protocatechuate 3,4-dioxygenase (PCD) from Pseudomonas putida shows resonance enhanced bands at 1605, 1504, 1270, 858, and 830 cm?1 which are due to the p-hydroxyphenyl group of tyrosine coordinated to iron. In addition, we observe strong resonance enhanced bands at 592 and 524 cm?1 and weak (presumably iron-ligand) vibrations at 465, 423, and 371 cm?1. Recent publications of the Raman spectrum of PCD from Pseudomonas aeruginosa (Tatsuno et al, J. Am. Chem. Soc. 100, 4614–4615 (1978) and Keyes et al, Biochem. Biophys. Res. Comm. 83, 941–945 (1978) using 488 and 514 nm excitation did not report these bands. Our 441.6 nm excitation Raman spectrum of human serum transferrin, another metalloprotein with an iron-tyrosine linkage, does not show the 592 and 524 cm?1 bands and has only two very weak bands at about 423 and 364 cm?1. We discuss several interpretations of these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号