首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Internal fertilization requires live sperm to be transferred from male to female before egg fertilization. Both males and females assist the insemination process by providing sperm with glandular secretions, which have been inferred to contain subsets of proteins that maintain sperm viability. Here we show that in the honeybee (Apis mellifera) secretions of the male accessory glands, the major contributors towards seminal fluid, enhance sperm survival. We further demonstrate that the protein fraction of the male accessory gland secretion is indeed important for achieving the maximal effect on sperm survival. After sperm storage, the queens also provide sperm with secretions from spermathecal glands and we show that these secretions have a comparable positive effect on sperm viability. SDS gels show that the proteomic profiles of accessory gland secretion and spermathecal fluid secretion hardly overlap, which suggests that males and females use different proteins to enhance sperm viability during, respectively, ejaculation and final sperm storage.  相似文献   

2.
G. Legg 《Journal of Zoology》1973,170(3):367-394
The reproduction of pseudoscorpions involves indirect sperm transfer by means of spermatophores. The spermatophores are the product of the male genital atrium. A functional interpretation of spermatophore formation in Chthonius ischnocheles is based on evidence from (a) a morphological study of the genital atrium, the associated accessory glands and the musculature (b) males sectioned during spermatophore production (c) histochemical tests on the glands and their secretions (d) biochemical analyses of one gland (posterior dorsal) and its secretion (e) the behaviour of males during this process and (f) the structure of the spermatophore.
The anterior region of the genital atrium is concerned with the production of the sperm packet. The encysted sperm and the seminal fluid from the prostatic reservoir are encapsulated in a sperm packet by a secretion from two pairs of anterior glands. The posterior region of the genital atrium is responsible for the formation of the spermatophore stalk and its distal elaboration, the two lateral collars. These parts of the spermatophore arise from the fibroin secretion of the posterior dorsal gland; the shape of the spermatophore collars is correlated with their mould, the medial diverticula. In addition the lateral glands secrete a light oil which accumulates on a thickening of the spermatophore stalk proximal to the collars. This suggested that this secretion acts as a pheromone to attract females to the spermatophore since in this species males produce their spermatophores in the absence of females.  相似文献   

3.
In Drosophila, male accessory gland fluid (seminal fluid) has multiple effects on the female's reproductive efficiency. Here, we show the effect of seminal fluid on rate of egg hatch immediately following mating. Singly mated females were remated to two classes of sterile males, one with seminal fluid and one without seminal fluid. Transfer of seminal fluid results in a strong reduction in egg hatch shortly after the mating. Also, it is shown that remating with normal males causes an immediate reduction of egg hatch followed by recovery to normal egg hatch. In all cases, unhatched eggs contained no sperm. These results are consistent with a role for seminal fluid in sperm competition, mediated by incapacitation or inefficient use of resident sperm.  相似文献   

4.
Drosophila melanogaster males transfer accessory gland proteins, as part of their seminal fluid, to females during each mating. Since accessory gland proteins are important for male reproductive success, it is important that the male replenish the proteins he transferred during mating. Previous studies had shown that mating induces the resynthesis of accessory gland proteins, but since mating includes a set of stereotyped behavior patterns as well as the act of copulation, it was not known which aspect of the mating process induces accessory gland protein synthesis. By exposing males to females whose ovipositors had been sealed shut, we have shown that resynthesis of accessory gland proteins occurs only when seminal fluid is transferred to females. By applying juvenile hormone or 20-hydroxyecdysone topically to the cuticle of male flies, we showed that these hormones can act in vivo to stimulate the synthesis of accessory gland proteins to levels similar to those observed after mating.  相似文献   

5.
U Tram  M F Wolfner 《Genetics》1999,153(2):837-844
The seminal fluid that is transferred along with sperm during mating acts in many ways to maximize a male's reproductive success. Here, we use transgenic Drosophila melanogaster males deficient in the seminal fluid proteins derived from the accessory gland (Acps) to investigate the role of these proteins in the fate of sperm transferred to females during mating. Competitive PCR assays were used to show that while Acps contribute to the efficiency of sperm transfer, they are not essential for the transfer of sperm to the female. In contrast, we found that Acps are essential for storage of sperm by females. Direct counts of stored sperm showed that 10% of normal levels are stored by females whose mates transfer little or no Acps along with sperm.  相似文献   

6.
Abstract.  Mature sperm of the leafhopper Balclutha incisa (Matsumara) (Cicadellidae: Auchenorrhyncha: Hemiptera) are stored as a series of sperm bundles within seminal vesicles prior to ejaculation. During transfer, sperm are pumped from the vesicles into the ejaculatory duct to the complex aedeagus. Sperm transfer is marked by a c . 30-fold expansion of the spermatheca to accommodate both sperm and seminal fluid. Sperm number increases exponentially with male age, reaching a maximum of 700 000 after 14 days, while the number of sperm available on days 2–5 is between 70 000 and 100 000. During mating, maximum sperm transfer occurs after 7 min and mating is complete after about 10 min. Ejaculate size, defined by both sperm and associated accessory gland fluid, is influenced by male mating status and the interval since the previous mating. There is a positive correlation between duration of copulation and both ejaculate and the time to subsequent mating. Sperm are more likely to be retained in the testes during mating by males of 2–5 days post-emergence than older males. The number of sperm received by the female can be manipulated experimentally by mating males once (medium ejaculate) or twice (small ejaculate) immediately after their first mating. Females that receive small ejaculates from sperm-depleted males have a far shorter refractory period than females receiving medium to large ejaculates. Both ejaculate size and the time after males have mated influence the female post-mating refractory period as measured by the female's responsiveness to male sexual signalling.  相似文献   

7.
Male seminal fluid proteins are known to affect female reproductive behavior and physiology by reducing mating receptivity and by increasing egg production rates. Such substances are also though to increase the competitive fertilization success of males, but the empirical foundation for this tenet is restricted. Here, we examined the effects of injections of size-fractioned protein extracts from male reproductive organs on both male competitive fertilization success (i.e., P2 in double mating experiments) and female reproduction in the seed beetle Callosobruchus maculatus. We found that extracts of male seminal vesicles and ejaculatory ducts increased competitive fertilization success when males mated with females 1 day after the females’ initial mating, while extracts from accessory glands and testes increased competitive fertilization success when males mated with females 2 days after the females’ initial mating. Moreover, different size fractions of seminal fluid proteins had distinct and partly antagonistic effects on male competitive fertilization success. Collectively, our experiments show that several different seminal fluid proteins, deriving from different parts in the male reproductive tract and of different molecular weight, affect male competitive fertilization success in C. maculatus. Our results highlight the diverse effects of seminal fluid proteins and show that the function of such proteins can be contingent upon female mating status. We also document effects of different size fractions on female mating receptivity and egg laying rates, which can serve as a basis for future efforts to identify the molecular identity of seminal fluid proteins and their function in this model species.  相似文献   

8.
Male black goby Gobius niger , adopting parental or sneaking tactics, differed in secondary sex traits (elongation of the 4th ray of the first dorsal fin and black nuptial colouration) thus allowing the classification of wild-caught males. Parental males were larger and older than sneaker males, suggesting that the mating tactic is an expression of an ontogenetic gradient. Males adopting alternative tactics differed also in primary sex traits, including their testes and their two pairs of accessory structures: the seminal vesicles and mesorchial glands. Sneaker males had a higher investment in testes, while parental males showed larger seminal vesicles and more developed mesorchial glands. Histological analyses also showed that seminal vesicles from parental males presented some functional differences from those of sneakers. In the former these organs were devoted solely to mucin secretion, while in the latter they stored sperm and had a lower activity of secretion. Seminal vesicle features influenced ejaculate (sperm trail) characteristics and performance. Parental male trails were richer in mucins, but poorer in sperm than trails deposited by sneakers. As a consequence, while sneakers produced trails that released a large amount of immediately active sperm, trails laid by parental males released less sperm more constantly over a long time.  相似文献   

9.
In most insects, sperm transferred by the male to the female during mating are stored within the female reproductive tract for subsequent use in fertilization. In Drosophila melanogaster, male accessory gland proteins (Acps) within the seminal fluid are required for efficient accumulation of sperm in the female's sperm storage organs. To determine the events within the female reproductive tract that occur during sperm storage, and the role that Acps and sperm play in these events, we identified morphological changes that take place during sperm storage in females mated to wild-type, Acp-deficient or sperm-deficient males. A reproducible set of morphological changes occurs in a wild-type mating. These were categorized into 10 stereotypic stages. Sperm are not needed for progression through these stages in females, but receipt of Acps is essential for progression beyond the first few stages of morphological change. Furthermore, females that received small quantities of Acps reached slightly later stages than females that received no Acps. Our results suggest that timely morphological changes in the female reproductive tract, possibly muscular in nature, may be needed for successful sperm storage, and that Acps from the male are needed in order for these changes to occur.  相似文献   

10.
Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition). Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed) this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se.  相似文献   

11.
Avoiding water loss for insects is critical for survival. Selection for reduced water loss will depend on trade-offs between resources allocated for reproduction and those allocated for resisting desiccation. However, we lack knowledge on how selection for desiccation resistance can affect the male ejaculate. Furthermore, as male ejaculate composition is complex, desiccation resistant females could evolve traits that enable them to derive longevity benefits from mating. Here, we assessed how selection for desiccation resistance impacts male testes and accessory gland size, protein content of these organs, female sperm storage and male ability to inhibit female remating behavior, in the Mexican fruit fly Anastrepha ludens. Additionally, we tested if mating increased longevity and fecundity in desiccation resistant females. Males selected for resistance to desiccation stress had smaller accessory glands and seminal vesicles and females mating with these males stored less sperm compared to control males. Females mating with resistant males had lower fecundity compared to females mating with control males. Desiccation resistant females lived longer than control females, yet this was irrespective of mating. Rapid evolutionary responses to hydric stress can have correlated effects in reproductive capabilities, which are not restricted to pre-copulatory traits. Trade-offs between resistance to desiccation stress are reflected in decreased allocation of resources to reproductive organs. Thus, production of the ejaculate may be costly for A. ludens males. Knowledge on the evolution of ejaculate traits and reproductive organ size in response to directional selection for desiccation resistance, will aid our understanding of differential sex-specific responses to environmental stress.  相似文献   

12.
FEMALES RECEIVE A LIFE-SPAN BENEFIT FROM MALE EJACULATES IN A FIELD CRICKET   总被引:7,自引:0,他引:7  
Abstract.— Mating has been found to be costly for females of some species because of toxic products that males transfer to females in their seminal fluid. Such mating costs seem paradoxical, particularly for species in which females mate more frequently than is necessary to fertilize their eggs. Indeed, some studies suggest that females may benefit from mating more frequently. The effect of male ejaculates on female life span and lifetime fecundity was experimentally tested in the variable field cricket, Gryllus lineaticeps. In field crickets, females will mate repeatedly with a given male and mate with multiple males. Females that were experimentally mated either repeatedly or multiply lived more than 32% longer than singly mated females. In addition, multiply mated females produced 98% more eggs than singly mated females. Because females received only sperm and seminal fluid from males in the experimental matings, these life‐span and fecundity benefits may result from beneficial seminal fluid products that males transfer to females during mating. Mating benefits rather than mating costs may be common in many animals, particularly in species where female mate choice has a larger effect on male reproductive success than does the outcome of sperm competition.  相似文献   

13.
Molecules in male seminal fluid transferred to female insects during mating can have potent effects on their subsequent sexual and reproductive behaviour. Like many other tephritids, female Queensland fruit flies (Bactrocera tryoni) typically have diminished sexual receptivity after their first mating. Also, copulations of females that do remate tend to be shorter than those of virgins. We here find that virgin females injected with small doses (0.1, 0.2 or 0.5 male equivalents) of extracts from the male reproductive tract accessory tissues, which consist of male accessory glands, ejaculatory apodeme and ejaculatory duct (AG/EA/ED), have diminished receptivity and short copula duration very similar to naturally mated females. In contrast, virgin females injected with saline or with high doses of AG/EA/ED (1 or 2 male equivalents) that likely exceed the range of natural variation retain the higher levels of sexual receptivity and longer copulations of un-injected virgins. We conclude that reduced sexual receptivity and shorter copulations of mated female Q-flies are mediated by products in the male seminal fluid derived from the male reproductive tract accessory tissues.  相似文献   

14.
The role of the female accessory reproductive glands has been investigated in relatively few insects. Gland secretion has a number of potential functions, including lubrication during copula, involvement in fertilization and protection of eggs. Female yellow dung flies (Scathophaga stercoraria) have large paired accessory glands whose function(s) prior to this study were unknown. Our study indicated glands were involved in copulation and egg laying. The volume of secretion remaining in glands was negatively associated with copulation duration, and this effect was most pronounced in non-ovipositing females. Gland volume and secretion volume remaining in the glands were significantly smaller in females which were allowed to oviposit. In addition, there was a significant interaction between male size, female size and whether or not females were allowed to oviposit which affected the volume of the secretion remaining in the glands, with changes in secretion volume being greatest when males were large. Sperm were found in the accessory glands of some females and this was apparently not related to age, mating history of either sex, to female nutrition or male size. Our results indicate that either large males stimulate greater secretory responses from females or that females alter their responses based on male size.  相似文献   

15.
16.
Ageing can reduce the probability that individuals reproduce. The present study investigates whether ageing influences the mating frequency of mass‐reared fertile and sterile Mexican fruit flies Anastrepha ludens (Loew). The ability of males of different ages to inhibit female remating is also determined, and the growth of male reproductive organs is measured as they age. Young males (6 days old) have a lower mating frequency than older males, and also have a lower capacity to inhibit female remating than older males. However, 7‐day‐old males are as likely to inhibit female remating as older males. Young males also have smaller reproductive organs than middle‐aged (21‐day‐old) or senescent males (57‐day‐old). These results have implications for the sterile insect technique because sterilized males of A. ludens are released in the field 6 days after emergence. The highest mating frequency, the lowest mating latency and the largest size of testes are observed at 21 days of age. Older males (57 days old) have more sperm in their seminal vesicles than young males (6 and 9 days old). Accessory glands take longer to grow to their complete size compared with testes, and mating frequency is more closely associated with accessory gland size than testes size. Furthermore, there are more sperm in the seminal vesicles during the afternoon period of peak sexual activity than during the morning when sexual activity is absent. These results indicate that, even at the onset of reproductive senescence, mass‐reared males of A. ludens are still capable of mating, as well as inhibiting remating in females.  相似文献   

17.
Sperm competition is a pervasive selective force in evolution, shaping reproductive anatomy, physiology and behaviour. Here, we present comparative evidence that varying sperm competition levels account for variation in the male reproductive anatomy of rodents, the largest and most diverse mammalian order. We focus on the sperm-producing testes and the accessory reproductive glands, which produce the seminal fluid fraction of the ejaculate. We demonstrate a positive association between relative testis size and the prevalence of within-litter multiple paternity, consistent with previous analyses in which relative testis size has been found to correlate with sperm competition levels inferred from social organization and mating systems. We further demonstrate an association between sperm competition level and the relative size of at least two accessory reproductive glands: the seminal vesicles and anterior prostate. The size of the major product of these glands-the copulatory plug-is also found to vary with sperm competition level. Our findings thus suggest that selection for larger plugs under sperm competition may explain variation in accessory gland size, and highlight the need to consider both sperm and non-sperm components of the male ejaculate in the context of post-copulatory sexual selection.  相似文献   

18.
The presence of male accessory gland substance during mating is shown to increase the blood intake in the adult female Aedes aegypti and Culex pipiens fatigans. Females mated with males whose accessory glands were surgically removed took significantly less blood than females mated with normal males. However, females mated with males whose seminal vesicles were surgically removed took as much blood as the controls.  相似文献   

19.
In context of the semi-sterility exhibited by Drosophila males expressing certain mating-enabling fruitless (fru) mutant genotypes, we examined the transfer of seminal fluid using a transgene that encodes the Sex Peptide (SP) oligopeptide fused to Green Fluorescent Protein (GFP). We found that this fusion construct expresses SP-GFP in a valid manner within accessory glands of the male reproductive system in normal and fru-mutant males. Transfer of SP-GFP to live females was readily detectable during and after copulation. With respect to the pertinent combinations of fru mutations, we demonstrated that these abnormal genotypes cause males to transmit mating-related materials in two aberrant ways: one involving whether any seminal-fluid entities are transferred at all during a given mating; the other revealing an intriguing aspect of these fruitless effects, such that the mutations in question cause males to transfer female-affecting materials in a manner that varies among copulations. In this regard, certain mutant males that do not transfer SP nevertheless are able to transfer sperm: a fru-mated female possessing no GFP who was not fecund initially could produce progeny when seminal-fluid proteins were subsequently supplied by mating with a male that was spermless owing to the effects of a tudor mutation.  相似文献   

20.
The relative significance of the accessory glands of the male reproductive tract in fertility is unclear. To clarify the role of the seminal vesicles, fertility and uterine sperm motility were determined before and after removal of seminal vesicles in the house mouse. After removal of seminal vesicles, the pregnancy rate (number of females pregnant/number of females X 100) was reduced and the time to birth was increased, while the average litter size was not changed. Fertilization, determined by examining the oocytes 30 h after mating, was highly variable after matings with males whose seminal vesicles were removed; in some cases none of the oocytes were fertilized. The motility of sperm recovered from the uterus 1 h after matings with males before and after seminal vesicle removal and sham operations was analyzed using a videomicrographic system. The motility of uterine sperm was less progressive with more lateral displacement of the head about the trajectory and a less linear trajectory after removal of the seminal vesicles. Sham-operated animals showed no consistent changes in motility of uterine sperm. The changes in sperm motility could contribute to the reduction in fertilization since sperm motility is necessary for transport in the female reproductive tract and interaction with the oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号