首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classical model of secretory vesicle recycling after exocytosis involves the retrieval of membrane (the omega figure) at a different site. An alternative model involves secretory vesicles transiently fusing with the plasma membrane (the 'kiss and run' mechanism) [1,2]. No continuous observation of the fate of a single secretory vesicle after exocytosis has been made to date. To study the dynamics of fusion immediately following exocytosis of insulin-containing vesicles, enhanced green fluorescent protein (EGFP) fused to the vesicle membrane protein phogrin [3] was delivered to the secretory vesicle membrane of INS-1 beta-cells using an adenoviral vector. The behaviour of the vesicle membrane during single exocytotic events was then examined using evanescent wave microscopy [4-6]. In unstimulated cells, secretory vesicles showed only slow Brownian movement. After a depolarizing pulse, most vesicles showed a small decrease in phogrin-EGFP fluorescence, and some moved laterally over the plasma membrane for approximately 1 microm. In contrast, secretory vesicles loaded with acridine orange all showed a transient (33-100 ms) increase in fluorescence intensity followed by rapid disappearance. Simultaneous observations of phogrin-EGFP and acridine orange indicated that the decrease in EGFP fluorescence occurred at the time of the acridine orange release, and that the lateral movement of EGFP-expressing vesicles occurred after this. Post-exocytotic retrieval of the vesicle membrane in INS-1 cells is thus slow, and can involve the movement of empty vesicles under the plasma membrane ('kiss and glide').  相似文献   

2.
Tear proteins are supplied by the regulated fusion of secretory vesicles at the apical surface of lacrimal gland acinar cells, utilizing trafficking mechanisms largely yet uncharacterized. We investigated the role of Rab27b in the terminal release of these secretory vesicles. Confocal fluorescence microscopy analysis of primary cultured rabbit lacrimal gland acinar cells revealed that Rab27b was enriched on the membrane of large subapical vesicles that were significantly colocalized with Rab3D and Myosin 5C. Stimulation of cultured acinar cells with the secretagogue carbachol resulted in apical fusion of these secretory vesicles with the plasma membrane. Evaluation of morphological changes by transmission electron microscopy of lacrimal glands from Rab27b(-/-) and Rab27(ash/ash)/Rab27b(-/-) mice, but not ashen mice deficient in Rab27a, showed changes in abundance and organization of secretory vesicles, further confirming a role for this protein in secretory vesicle exocytosis. Glands lacking Rab27b also showed increased lysosomes, damaged mitochondria, and autophagosome-like organelles. In vitro, expression of constitutively active Rab27b increased the average size but retained the subapical distribution of Rab27b-enriched secretory vesicles, whereas dominant-negative Rab27b redistributed this protein from membrane to the cytoplasm. Functional studies measuring release of a cotransduced secretory protein, syncollin-GFP, showed that constitutively active Rab27b enhanced, whereas dominant-negative Rab27b suppressed, stimulated release. Disruption of actin filaments inhibited vesicle fusion to the apical membrane but did not disrupt homotypic fusion. These data show that Rab27b participates in aspects of lacrimal gland acinar cell secretory vesicle formation and release.  相似文献   

3.
《The Journal of cell biology》1994,127(6):1589-1601
Synaptophysin is a major transmembrane glycoprotein of a type of small vesicle with an electron-translucent content (SET vesicles), including the approximately 50-nm presynaptic vesicles in neuronal cells, and of similar, somewhat larger (< or = approximately 90 nm) vesicles (SLMV) in neuroendocrine (NE) cells. When certain epithelial non-NE cells, such as human hepatocellular carcinoma PLC cells, were cDNA transfected to synthesize synaptophysin, the new molecules appeared in specific SET vesicles. As this was in contrast to other reports that only NE cells were able to sort synaptophysin away from other plasma membrane proteins into presynaptic- or SLMV-type vesicles, we have further characterized the vesicles containing synaptophysin in transfected PLC cells. Using fractionation and immunoisolation techniques, we have separated different kinds of vesicles, and we have identified a distinct type of synaptophysin-rich, small (30-90-nm) vesicle that contains little, if any, protein of the constitutive secretory pathway marker hepatitis B surface antigen, of the fluid phase endocytosis marker HRP, and of the plasma membrane recycling endosomal marker transferrin receptor. In addition, we have found variously sized vesicles that contained both synaptophysin and transferrin receptor. A corresponding result was also obtained by direct visualization, using double-label immunofluorescence microscopy for the endocytotic markers and synaptophysin in confocal laser scan microscopy and in double- immunogold label electron microscopy. We conclude that diverse non-NE cells of epithelial nature are able to enrich the "foreign" molecule synaptophysin in a category of SET vesicles that are morphologically indistinguishable from SLMV of NE cells, including one type of vesicle in which synaptophysin is sorted away from endosomal marker proteins. Possible mechanisms of this sorting are discussed.  相似文献   

4.
Neuropeptides are released into the extracellular space from large secretory granules. In order to reach their release sites, these granules are translocated on microtubules and thought to interact with filamentous actin as they approach the cell membrane. We have used a green fluorescent protein-tagged neuropeptide prohormone (prepro-orphanin FQ) to visualize vesicle trafficking dynamics in NS20Y cells and cultures of primary hippocampal neurons. We found that the majority of secretory granules were mobile and accumulated at both the tips of neurites as well as other apparently specialized cellular sites. We also used live-cell imaging to test the notion that peptidergic vesicle mobility was regulated by secretagogues. We show that treatment with forskolin appeared to increase vesicle rates of speed, while depolarization with high K+ had no effect, even though both treatments stimulated neuropeptide secretion. In cultured hippocampal neurons the green fluorescent protein-tagged secretory vesicles were routed to both dendrites and axons, indicating that peptidergic vesicle transport was not polarized. Basal peptidergic vesicle mobility rates in hippocampal neurons were the same as those in NS20Y cells. Taken together, these studies suggest that secretory vesicle mobility is regulated by specific classes of secretagogues and that neuropeptide containing secretory vesicles may be released from dendritic structures.  相似文献   

5.
This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued), a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.  相似文献   

6.
The gastric parietal cell secretes large quantities of HCl into the lumen of the gastric gland in response to secretagogues such as histamine. In the membrane recycling hypothesis, this secretory activity requires the trafficking of the gastric H+/K(+)-ATPase to the cell surface from intracellular tubulovesicles. The Rab subclass of small GTP-binding proteins is thought to confer specificity to vesicle transport throughout the secretory pathway, and previous investigations established that Rab11 is highly expressed in gastric parietal cells. Recent discoveries in intra-Golgi transport and neuronal synaptic vesicle fusion have fortuitously converged on an evolutionarily conserved protein complex involved in vesicle docking and fusion. Recent results indicate that Rab11 is involved in the apical targeting of vesicles in parietal cells and other epithelial cells throughout the gastrointestinal tract. In support of the membrane recycling hypothesis, Rab co-segregates with H+/K(+)-ATPase in parietal cells. The presence of Rab11 on tubulovesicles supports a role for this Rab protein in recycling vesicle trafficking.  相似文献   

7.
Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells   总被引:1,自引:0,他引:1  
Antigen-mediated activation of mast cells results in Ca2+-dependent exocytosis of preformed mediators of the inflammatory response. To investigate the role of secretory vesicle motility in this response, we have performed time-lapse confocal microscopy on RBL-2H3 cells transfected with a green fluorescent protein-Fas ligand fusion protein (GFP-FasL). Green fluorescent protein-labeled vesicles exhibit rapid, bidirectional movement in both resting and activated cells and can be localized adjacent to microtubules. Colchicine treatment inhibits the motility of secretory vesicles as measured by fluorescence recovery after photobleaching (FRAP). Colchicine also inhibits both the extent and the rate of exocytosis triggered by receptor activation or by Ca2+ ionophore, demonstrating that microtubule-dependent movement of secretory vesicles plays an important role in the exocytic response .  相似文献   

8.
Constitutive exo- and endocytic events are expected to increase and diminish the cell surface area in small spontaneous steps. Indeed, cell-attached patch-clamp measurements in resting chromaffin cells revealed spontaneous upward and downward steps in the electrical capacitance of the plasma membrane. The most frequent step size indicated cell surface changes of <0.04 microm(2), corresponding to vesicles of <110 nm diameter. Often downward steps followed upward steps within seconds, and vice versa, as if vesicles transiently opened and closed their lumen to the external space. Transient openings and closings sometimes alternated rhythmically for tens of seconds. The kinase inhibitor staurosporine dramatically increased the occurrence of such rhythmic episodes by making vesicle closure incomplete and by inhibiting fission. Staurosporine also promoted transient closures of large endocytic vesicles possibly representing remnants of secretory granules. We suggest that staurosporine blocks a late step in the endocytosis of both small and large vesicles, and that endocytosis involves a reaction cascade that can act as a chemical oscillator.  相似文献   

9.
Peptidergic neurotransmission is slow compared to that mediated by classical neurotransmitters. We have studied exocytotic membrane fusion and cargo release by simultaneous capacitance measurements and confocal imaging of single secretory vesicles in neuroendocrine cells. Depletion of the readily releasable pool (RRP) correlated with exocytosis of 10%-20% of the docked vesicles. Some remaining vesicles became releasable after recovery of RRP. Expansion of the fusion pore, seen as an increase in luminal pH, occurred after approximately 0.3 s, and peptide release was delayed by another 1-10 s. We conclude that (1) RRP refilling involves chemical modification of vesicles already in place, (2) the release of large neuropeptides via the fusion pore is negligible and only proceeds after complete fusion, and (3) sluggish peptidergic transmission reflects the time course of vesicle emptying.  相似文献   

10.
Ultrastructure of lactating bovine and rat mammary epithelial cells was studied with emphasis on secretory vesicle interactions. In the apical zone of the cell, adjacent secretory vesicles formed ball and socket configurations at their points of apposition. Similar configurations were formed between plasma membrane and secretory vesicle membrane. These structures may be formed by the diffusion of water between vesicles with different osmotic potentials. Frequently, vesicular chains consisting of 10 or more linked secretory vesicles were observed. Prior to the exocytotic release of casein micelles, adjacent vesicles fused through fragmentation of the ball and socket membrane. These membrane fragments and the casein micelles appeared to be secreted into the alveolar lumen after passing from one vesicle into another and finally through a pore in the apical plasma membrane. Emptied vesicular chains appeared to collapse and fragmentation of their membrane was observed. Based on these observations, we suggest that most vesicular membrane does not directly contact or become incorporated into the plasma membrane during secretion of the nonfat phase of milk.  相似文献   

11.
《The Journal of cell biology》1986,103(6):2273-2281
Proinsulin is a single polypeptide chain composed of the B and A subunits of insulin joined by the C-peptide region. Proinsulin is converted to insulin during the maturation of secretory vesicles by the action of two proteases and conversion is inhibited by ionophores that disrupted intracellular H+ gradients. To determine if conversion of prohormone to hormone actually occurs in an acidic secretory vesicle, cultured rat islet cells were incubated in the presence of 3-(2,4- dinitroanilino)-3' amino-N-methyldipropylamine (DAMP), a basic congener of dinitrophenol that concentrates in acidic compartments and is retained there after aldehyde fixation. The cells were processed for indirect protein A-gold colocalization of DAMP, using a monoclonal antibody to dinitrophenol, and proinsulin, using a monoclonal antibody that exclusively reacts with the prohormone. The average density of DAMP-specific gold particles in immature secretory vesicles that contained proinsulin was 71/micron 2 (18 times cytoplasmic background), which indicated that this compartment was acidic. However, the density of DAMP-specific gold particles in the insulin-rich mature secretory vesicle averaged 433/micron 2. This suggests that although proinsulin conversion occurs in an acidic compartment, the secretory vesicles become more acidic as they mature. Since the concentration of anti- proinsulin IgG binding in secretory vesicles is inversely proportional to the conversion of proinsulin to insulin, we were able to determine that maturing secretory vesicles had to reach a critical pH before proinsulin conversion occurred.  相似文献   

12.
The secretory process for glycoproteins in principal cells of the mouse caput epididymis was studied by electron microscope radioautography at intervals after exposure to [3H] fucose in vitro. The large Golgi apparatus showed very heavy labeling at the initial interval, followed by a steady decline in percent of grains and relative grain concentrations. Conversely, the epididymal lumen and the apical cell surface began low and increased in radioactivity at the 30-min interval. The extensive sparsely granulated endoplasmic reticulum showed modest increases in percent of grains and relative grain concentrations 30 min after administration of the percursor. Subdivision of the sparsely granulated reticulum into "intermediate" profiles (some ribosomes attached to the membranes) and "smooth" profiles (lacking ribosomes) showed that this increase was due to silver grains assigned to the smooth portions. After the initial interval, high relative grain concentrations were calculated for vesicles. The results indicate that glycosylation of epididymal secretory glycoproteins occurs in the Golgi apparatus, which is, therefore, not bypassed as its morphological features had suggested. The kinetics of the secretory process in the principal cells includes 15 to 30 min for synthesis of the polypeptide parts of secretory products and addition of sugars in the Golgi apparatus, and a similar time for subsequent release from the Golgi apparatus, transport to the apical end of the cell and discharge to the lumen. Ribosome-studded (intermediate) portions of the sparsely granulated endoplasmic reticulum are probably involved in synthesis of polypeptide parts of secretory products, while vesicles or smooth portions of the sparsely granulated reticulum may play a role in intracellular transport of glycoproteins.  相似文献   

13.
Sec14p homology domains are found in a large number of proteins from plants, yeast, invertebrates, and higher eukaryotes. We report that the N-terminal Sec14p homology domain of the human protein tyrosine phosphatase PTP-MEG2 binds phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) in vitro and colocalizes with this lipid on secretory vesicle membranes in intact cells. Point mutations that prevented PtdIns(3,4,5)P(3) binding abrogated the capacity of PTP-MEG2 to induce homotypic secretory vesicle fusion in cells. Inhibition of cellular PtdIns(3,4,5)P(3) synthesis also rapidly reversed the effect of PTP-MEG2 on secretory vesicles. Finally, we show that several different phosphoinositide kinases colocalize with PTP-MEG2, thus allowing for local synthesis of PtdIns(3,4,5)P(3) in secretory vesicle membranes. We suggest that PTP-MEG2 through its Sec14p homology domain couples inositide phosphorylation to tyrosine dephosphorylation and the regulation of intracellular traffic of the secretory pathway in T cells.  相似文献   

14.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

15.
A method for the isolation and culture of seminal vesicle epithelial cells obtained from control and androgen-primed sexually-immature, uncastrated rats is described. This method allows the establishment of monolayer cultures from aggregates of seminal vesicle epithelial cells isolated after trypsin and collagenase digestion. Phase contrast and transmission electron microscopic methods demonstrate that cell aggregates, after attaching to the substrate, establish within 48 h a colony-like, epithelial-like growth pattern. Immunofluorescent localization studies of SVS IV, an androgen-dependent secretory protein purified from rat seminal vesicle secretion, show that cultured seminal vesicle epithelial cells are immunoreactive. An electrophoretic analysis of [35S]methionine-labeled secretory proteins immunoprecipitated with rabbit anti-SVS IV serum demonstrate that, whereas SVS IV is newly-synthesized and accumulated in the medium of cultured seminal vesicle cells established from androgen primed rats, cultured cells from control rats appear to synthesize and accumulate SVS IV in a precursor form. Results of this work show that seminal vesicle epithelial cells in culture not only retain several structural features representative of the tissue but also serve as a potential system for the study of androgen action.  相似文献   

16.
A morphological, histological and ultrastructural study was carried out on the spermiducts and seminal vesicles of some species of Acrididae and Tettigoniidae. In all the species examined, the spermiducts and seminal vesicles have a monolayered secretory epithelium. Only the species of Acrididae have the sac with a flattened epithelium. Furthermore, in the most distal tubule region of the seminal vesicles of Eyprepocnemis plorans plorans, a rather characteristic secretory mechanism was found: the cytoplasm of the epithelial cells contained a large vesicle delimited by tightly packed microvilli. Numerous small vesicles open into this large vesicle which gradually dilates to merge with the apical plasma membrane releasing its contents into the lumen. Spermiophagic activity was found in all the species investigated. In the Tettigoniidae, this activity was found only in some epithelial cells of the seminal vesicle wall; in the species of the Acrididae the spermiophagic activity was carried out in the spermiduct lumen by an epithelial‐type cellular group. Spermiophagic activity is discussed as well as its role in the reproduction of these insects.  相似文献   

17.
《The Journal of cell biology》1993,122(6):1169-1184
Many peptide hormones are synthesized as larger precursors which undergo endoproteolytic cleavage at paired basic residues to generate a bioactive molecule. Morphological evidence from several laboratories has implicated either the TGN or immature secretory granules as the site of prohormone cleavage. To identify the site where prohormone cleavage is initiated, we have used retrovirally infected rat anterior pituitary GH3 cells which express high levels of prosomatostatin (proSRIF) (Stoller, T. J., and D. Shields. J. Cell Biol. 1988. 107:2087- 2095). By incubating these cells at 20 degrees C, a temperature that prevents exit from the Golgi apparatus, proSRIF accumulated quantitatively in the TGN and no proteolytic processing was evident; processing resumed upon shifting the cells back to 37 degrees C. After the 20 degrees C block, the cells were mechanically permeabilized and pro-SRIF processing determined. Cleavage of proSRIF to the mature hormone was approximately 35-50% efficient, required incubation at 37 degrees C and ATP hydrolysis, but was independent of GTP or cytosol. The in vitro ATP-dependent proSRIF processing was inhibited by inclusion of chloroquine, a weak base, CCCP, a protonophore, or by preincubating the permeabilized cells with low concentrations of N- ethylmaleimide, an inhibitor of vacuolar-type ATP-dependent proton pumps. These data suggest that: (a) proSRIF cleavage is initiated in the TGN, and (b) this reaction requires an acidic pH which is facilitated by a Golgi-associated vacuolar-type ATPase. A characteristic feature of polypeptide hormone-producing cells is their ability to store the mature hormone in dense core secretory granules. To investigate the mechanism of protein sorting to secretory granules, the budding of nascent secretory vesicles from the TGN was determined. No vesicle formation occurred at 20 degrees C; in contrast, at 37 degrees C, the budding of secretory vesicles was approximately 40% efficient and was dependent on ATP, GTP, and cytosolic factors. Vesicle formation was inhibited by GTP gamma S suggesting a role for GTP- binding proteins in this process. Vesicle budding was dependent on cytosolic factors that were tightly membrane associated and could be removed only by treating the permeabilized cells with high salt. After high salt treatment, vesicle formation was dependent on added cytosol or the dialyzed salt extract. The formation of nascent secretory vesicles contrasts with prosomatostatin processing which required only ATP for efficient cleavage. Our results demonstrate that prohormone cleavage which is initiated in the TGN, precedes vesicle formation and that processing can be uncoupled from the generation of nascent secretory vesicles.  相似文献   

18.
Summary In the outer cap cells of roots of Zea mays, secretion is accompanied by hypertrophy of dictyosome cisternae with formation of large secretory vesicles. Vesicle contents are subsequently released from the protoplast by fusion of the vesicle membrane with the plasma membrane. The secreted material, a highly hydrated polysaccharide, was localized intracellularly by the periodic acid-Schiff reaction. Under appropriate conditions, the product moves outward through the cell wall after discharge from the protoplast, and appears as a droplet adhering to the root tip. Under conditions where the secretory product accumulates at the inner wall surfaces, no external droplet is formed.The secretory activity has an active phase that is sensitive to metabolic inhibitors and influenced by temperature (Q10>2), and a passive phase that is independent of temperature, insensitive to metabolic inhibitors but sensitive to osmotic agents. The active phase is characterized by a temperature-independent periodicity (3 hours). Sucrose supplied to the growth medium increases the amount of polysaccharide secreted. Polysaccharide synthesis, segregation into vesicles, and discharge from the protoplast are assumed to require active metabolism; the step involving extrusion of polysaccharide through the cell wall region appears to be a passive process influenced by the degree of hydration of the polysaccharide and by cell turgor.Purdue University Agricultural Experiment Station Journal Paper No. 2967; Charles F. Kettering Research Laboratory Contribution No. 261.  相似文献   

19.
Femtosecond-pulsed laser irradiation was found to initiate giant plasma membrane vesicle (GPMV) formation on individual cells. Laser-induced GPMV formation resulted from intracellular cavitation and did not require the addition of chemical stressors to the cellular environment. The viscosity, structure, and contents of laser-induced GPMVs were measured with fluorescence microscopy and single-particle tracking. These GPMVs exhibit the following properties: (1) GPMVs grow fastest immediately after laser irradiation; (2) GPMVs contain barriers to free diffusion of incorporated fluorescent beads; (3) materials from both the cytoplasm and surrounding media flow into the growing GPMVs; (4) the GPMVs are surrounded by phospholipids, including phosphatidylserine; (5) F-actin is incorporated into the vesicles; and (6) caspase activity is not essential for GPMV formation. The effective viscosity of 65 nm polystyrene nanoparticles within GPMVs ranged from 32 to 434 cP. The nanoparticle diffusion was commonly affected by relatively large, macromolecular structures within the bleb.  相似文献   

20.
The effects of four potential inhibitors of dictyosome activityon the root cap secretory system were monitored by visual estimationof slime droplet reformation rates and by quantitative microscopyof the secretory cells. Only monensin was found to affect bothdroplet reformation and cell structure. While some of our structuralobservations on the effects of this drug, such as swelling ofvesicles and dictyosome cisternae, agreed with those made previously,others did not. We are able to confirm a real increase in vesiclenumber, in addition to the numerical increase in vesicle profilesthat follows from an increase in vesicle size. Formation ofcup-shaped dictyosomes and separation of cisternae were foundto be just as prevalent in the normal and in the solvent controls,especially when fixed with permanganate. Scopoletin, tunicamycin and 2, 6-dichlorobenzonitrile all affecteddroplet formation but had no significant effect on cell structure.It is suggested that these chemicals were affecting water flowinto the slime droplet, rather than directly inhibiting Golgi-activityor release of carbohydrates by the secretory vesicles. The problems of using the root cap system for the identificationof specific Golgi inhibitors are discussed. Key words: Maize, Root cap secretion, Golgi activity inhibitors, Dichlorobenzonitrile, Monensin, Scopoletin, Tunicamycin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号