共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. 总被引:2,自引:2,他引:2 下载免费PDF全文
D P Siegel 《Biophysical journal》1986,49(6):1171-1183
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems. 相似文献
3.
This study revealed large distinctions between the lamellar and non-lamellar liquid crystalline lipid phases in their spreading at the air/water interface and propensity to form bilayer foam films. Comparative measurements were made for the lamellar L(alpha), the inverted hexagonal H(II) and the bicontinuous cubic Pn3m phases of the phospholipid dipalmitoleoylphosphatidylethanolamine (DPoPE). With regard to monolayer formation, followed as the decrease of surface tension with time, the best spreading (lowest surface tension) was observed for the L(alpha) phase, and poorest spreading (highest surface tension) was recorded for the H(II) phase. The cubic Pn3m phase of DPoPE, induced by temperature cycling, retained an intermediate position between the L(alpha) and H(II) phases. According to their ability to lower surface tension and disintegrate at the air/water interface, the three phases thus order as L(alpha)>Pn3m>H(II). Clearly expressed threshold (minimum) bulk lipid concentrations, C(t), required for formation of stable foam bilayers from these phases, were determined and their values were found to correlate well with the bulk lipid phase behaviour. The C(t) values for L(alpha) and H(II) substantially increase with the temperature. Their Arrhenius plots, ln C(t) versus 1/ T, are linear and intersect at approximately 36-37 degrees C, coinciding with the onset of the bulk L(alpha)-->H(II) phase transition, as determined by differential scanning calorimetry. However, the C(t) value for the Pn3m phase, equal to 30 micro g/mL, was found to be constant over the whole range investigated between 20 degrees C and 50 degrees C. The horizontal C(t) versus T plot for the Pn3m phase crosses the respective plot for the L(alpha) phase at the temperature bounding from below the hysteretic loop of the L(alpha)<-->H(II) transition (approximately 26 degrees C), thus providing a certain insight about the thermodynamic stability of the Pn3m phase relative to the L(alpha) phase. The established strong effect of the particular lipid phase on the formation of monolayers and stable black foam films should be of importance in various in vitro and in vivo systems, where lipid structures are in contact with interfaces and disintegrate there to different extents. 相似文献
4.
M Caffrey 《Biochemistry》1987,26(20):6349-6363
A study of the dynamics and mechanism of the various thermotropic phase transitions undergone by the hydrated monoacylglycerides monoolein and monoelaidin, in the temperature range of 20-120 degrees C and from 0 to 5 M NaCl, has been undertaken. Measurements were made by using time-resolved X-ray diffraction at the Cornell High-Energy Synchrotron Source. The lamellar chain order/disorder, lamellar/cubic (body centered, space group No. 8), cubic (body centered, No. 8)/cubic (primitive, No. 4), cubic (body centered, No. 12)/cubic (primitive, No. 4), cubic (primitive, No. 4)/fluid isotropic, cubic (body centered, No. 12)/inverted hexagonal, cubic (primitive, No. 4)/inverted hexagonal, and hexagonal/fluid isotropic transitions were examined under active heating and passive cooling by using a jump in temperature to effect phase transformation. All of the transitions with the exception of the cubic (body centered, No. 8)/cubic (primitive, No. 4) and the cubic (body centered, No. 12)/cubic (primitive, No. 4) cooling transitions were found (1) to be repeatable, (2) to be reversible, and (3) to have an upper bound on the transit time (time required to complete the transition) of less than or equal to 3 s. The shortest transit times recorded for the various phase changes in the heating direction were less than or equal to 1.9 (lamellar chain melting), less than or equal to 1.7 [lamellar liquid crystal/cubic (body (body centered, No. 8)], less than or equal to 0.5 [cubic (body centered, No. 8)/cubic (primitive, No. 4)], less than or equal to 0.9 [cubic (primitive, No. 4)/hexagonal], less than or equal to 1.3 [cubic (body centered, No. 12)/cubic (primitive, No. 4) and cubic (body centered, No. 12)/hexagonal], and less than or equal to 0.6 s (hexagonal/fluid isotropic). For the exceptions noted above, the transitions were slow with transit times ranging from 0.5 to 30 min and displayed pronounced hysteresis and/or undercooling. Regardless of the direction of the transitions, all but one appear to be two state to within the sensitivity limits of the time-resolved method. In the case of the lamellar liquid crystal/cubic (body centered, No. 8) transition a stable intermediate of unknown identity was apparent. In addition to the time-resolved measurements, data were obtained on the stability of the various phases in the temperature range of 20-120 degrees C and from 0 to 5 M NaCl. In the case of fully hydrated monoolein, high salt strongly favors the hexagonal over the cubic (body centered, No. 8) phase and slightly elevates the hexagonal/fluid isotropic transition temperature.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
5.
The transitions lamellar → cubic → hexagonal in the aqueous system of sunflower oil monoglycerides are analysed. X-Ray diffraction data show linear relationships between the lattices of the three phases, which are discussed on the basis of structures formed by lipid bilayer units. The cubic structure is related to ‘Schwarz's primitive cubic minimal surface’ and consists of a three-dimensional continuous bilayer system separating two separate water channel systems.It is also pointed out that the three-dimensional membrane system in plant plastids, the prolamellar body, which is involved in the formation of thylakoid membranes of chloroplasts, has a structure which is closely related to or identical with that of the cubic phase of monoglyceride-water systems. 相似文献
6.
Order and dynamics in the lamellar L alpha and in the hexagonal HII phase. Dioleoylphosphatidylethanolamine studied with angle-resolved fluorescence depolarization. 下载免费PDF全文
Fluorescence depolarization techniques are used to determine the molecular order and reorientational dynamics of the probe molecule TMA-DPH embedded in the lamellar L alpha and the hexagonal HII phases of lipid/water mixtures. The thermotropically induced L alpha----HII phase transition of the lipid DOPE is used to obtain macroscopically aligned samples in the hexagonal HII phase at 45 degrees C from samples prepared in the lamellar L alpha phase at 7 degrees C. The interpretation of angle-resolved fluorescence depolarization experiments on these phases, within the framework of the rotational diffusion model, yields the order parameters (P2) and (P4), and the diffusion constants for the reorientational motions. The reorientational motion rates of the TMA-DPH molecules in the hexagonal HII phase are comparable with those in the lamellar L alpha phase. Furthermore, the lateral diffusion of the probe molecule on the surface of the lipid/water cylinder in the hexagonal phase is found to be considerably slower than the reorientational motion. 相似文献
7.
Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids 总被引:21,自引:0,他引:21
J M Seddon 《Biochimica et biophysica acta》1990,1031(1):1-69
8.
The rates of intramolecular excimer formation of di(1'-pyrenemyristoyl)phosphatidylcholine (dipyPC) in dioleoylphosphatidylethanolamine (DOPE), egg PE/diolein (DG) and dilinoleoyl-PE (DLPE)/1-palmitoyl-2-oleoyl-PC (POPC) were studied at different temperatures and lipid compositions. Both the excimer-to-monomer intensity ratio and the excimer association rate constant were employed to quantify the rate of excimer formation. The latter was calculated from the measured monomer fluorescence lifetime of dipyPC. We observed that the rate of excimer formation was sensitive to either the temperature-induced or lipid composition-induced lamellar-to-inverted hexagonal phase transition of the above lipid systems. As the lipids entered the inverted hexagonal phase, the rate of excimer formation increased at the temperature-induced phase transition for DOPE, but decreased at the composition-induced phase transition for both TPE/DG and DLPE/POPC systems by increasing the DG% and decreasing the PC%, respectively. We conclude that the rate of intramolecular excimer formation of dipyPC in the non-lamellar phase is influenced both by the intra-lipid free volume of the hydrocarbon region and the intra-rotational dynamics of the two lipid acyl chains. 相似文献
9.
The orientational order profile has been determined by using deuterium nuclear magnetic resonance (2H NMR) for POPE in the lamellar liquid-crystalline (L alpha) and the hexagonal (HII) phases and is shown to be sensitive to the symmetry of the lipid phase. In the HII phase, as compared to the L alpha phase, the acyl chains are characterized by a greater motional freedom, and the orientational order is distributed more uniformly along the lipid acyl chain. This is consistent with a change from a cylindrical to a wedge-shaped space available for the lipid chain. 2H NMR studies of POPE dispersions containing tetradecanol or decane, both of which can induce HII phase structure, show very different behavior. Tetradecanol appears to align with the phospholipid chains and experience the L alpha to HII phase transition with a similar change in motional averaging as observed for the phospholipid chains themselves. In contrast, decane is apparently deeply embedded in the lipid structure and exhibits only a small degree of orientation. The L alpha to HII phase transition for systems containing decane leads to a dramatic increase of the motional freedom of decane which is more pronounced than that observed for the lipid chains. This is consistent with a preferential partition of the decane molecules into a disordered environment such as the intercylinder spaces in the HII phase. The presence of decane in the HII phase structure does not modify the order of the lipid chains.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Intramolecular excimer formation in pyrene-labeled phosphatidylcholine was used as a tool to determine thermodynamic characteristics of the lamellar to hexagonal phase transitions in a binary lipid system dilinoleoylphosphatidylethanolamine (DLPE)/palmitoyloleoylphosphatidylcholine (POPC). Upon an L alpha/HII phase transition, the activation energy Ea for excimer formation increased from 5.6 +/- 0.2 kcal/mol to 6.3 +/- 0.2 kcal/mol, while the activation entropy delta S decreased from -40.0 +/- 0.8 cal/K.mol to -38.4 +/- 0.8 cal/K.mol. The results are consistent with the idea of molecular splaying of the acyl chains in the hexagonal phase. It is estimated that the molecular area at the terminal carbon of the lipid acyl chains increases by a factor of 2.2 upon the L alpha HII transition in DLPE/POPC. 相似文献
11.
The polymorphic phase behaviour of dilinoleoylphosphatidyethanolamine (DLPE) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) is investigated by freeze-fracture electron microscopy, X-ray diffraction and 31P-NMR. The structures at 5% or less POPC are predominantly inverted hexagonal (HII), whereas at 15% or more POPC, the structure is mostly bilayer (L), interrupted by defects (lipidic particles). A cubic phase structure is observed in the transition range between H and L phases; the cubic arrangement deteriorates at higher temperatures into an amorphous aggregate of spherical units. Both cubic and amorphous structures contribute to the isotropic 31P resonance, with no preference for PC or PE partitioning in the isotropic motion as observed by high resolution NMR. The existence of the cubic phase seems to depend cirtically on the homogeneity and the degree unsaturation of the phospholipids. 相似文献
12.
Kinetics of the lamellar and hexagonal phase transitions in phosphatidylethanolamine. Time-resolved x-ray diffraction study using a microwave-induced temperature jump. 下载免费PDF全文
The kinetics of the thermotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) and L alpha/inverted hexagonal (HII) phase transitions in fully hydrated dihexadecylphosphatidylethanolamine (DHPE) have been studied. Measurements were made by using time-resolved x-ray diffraction (TRXRD) to monitor progress of the transitions. In these studies microwave energy at 2.5 GHz was used to increase the sample temperature rapidly and uniformly through the phase transition regions. The L beta'/L alpha and L alpha/HII transitions of DHPE were examined under active microwave heating and passive cooling. The transitions were found to be repeatable and reversible, and to have an upper bound on the time required to complete the transition of less than 3 s. Regardless of the direction of the transition, both phase transitions appeared to be two-state with no accumulation of intermediates to within the sensitivity limits of the TRXRD method. The rate and amplitude of the temperature jump can be controlled by regulating microwave radiation input power. A temperature jump rate of 29 degrees C/s was obtained at a final microwave power setting of 120 W. Comparisons between previously reported fluid flow (Caffrey, M. 1985. Biochemistry. 24:4826-4844) and microwave heating studies suggest that the determination of limiting transit times will require faster heating. 相似文献
13.
The role of the tryptophan-residues in gramicidin-induced HII phase formation was investigated in dioleoylphosphatidylcholine (DOPC) model membranes. 31P-NMR and small angle X-ray diffraction measurements showed, that gramicidin A and C (in which tryptophan-11 is replaced by tyrosine) induce a similar extent of HII phase formation, whereas for gramicidin B and synthetic analogs in which one tryptophan, either at position 9 or 11 is replaced by phenylalanine, a dramatic decrease of the HII phase inducing activity can be observed. Modification of all four tryptophans by means of formylation of the indole NH group leads to a complete block of HII phase formation. Sucrose density centrifugation experiments on the various peptide/lipid samples showed a quantitative incorporation of the peptide into the lipid. For all samples in a 1/10 molar ratio of peptide to lipid distinct bands were found, indicative of a phase separation. For the gramicidin A'/DOPC mixture these bands were analyzed and the macroscopic organization was determined by 31P-NMR and small-angle X-ray diffraction. The results demonstrate that a quantitative phase separation had occurred between a lamellar phase with a gramicidin/lipid ratio of 1/15 and a hexagonal HII phase, which is highly enriched in gramicidin. A study on the hydration properties of tryptophan-N-formylated gramicidin in mixtures with DOPC showed that this analog has a similar dehydrating effect on the lipid headgroup as the unmodified gramicidin. In addition both the hydration study and sucrose density centrifugation experiments showed that, like gramicidin also its analogs have a tendency to aggregate, but with differences in aggregation behaviour which seemed related to their HII phase inducing activity. It is proposed that the main driving force for HII phase formation is the tendency of gramicidin molecules to self-associate and organize into tubular structures such as found in the HII phase and that whether gramicidin (analogs) form these or other types of aggregates depends on their tertiary structure, which is determined by intra- as well as intermolecular aromatic-aromatic stacking interactions. 相似文献
14.
15.
16.
C Megret V Guantieri A Lamure M T Pieraggi C Lacabanne A M Tamburro 《International journal of biological macromolecules》1992,14(1):45-49
Differential scanning calorimetry (d.s.c.) and thermally stimulated current (t.s.c.) have been applied to the study of thermal transitions and dielectric relaxations of a pentapeptide sequence: Gly-Leu-Gly-Gly-Val of elastin. The manifestation of the glass transition has been observed by both techniques. The analysis of the fine structure of t.s.c. spectra reveals the existence of local order in the amorphous phase upon physical ageing. In the 'true' amorphous phase, cooperative motions of sequences of various length are observed. The corresponding activation parameters are characteristic of the 'structure' of the amorphous phase and might be used as reference for further studies. 相似文献
17.
18.
Liu Q Ling TY Shieh HS Johnson FE Huang JS Huang SS 《The Journal of biological chemistry》2001,276(49):46212-46218
The biological activities of transforming growth factor-beta isoforms (TGF-beta(1,2)) are known to be modulated by alpha(2)-macroglobulin (alpha(2)M). alpha(2)M forms complexes with numerous growth factors, cytokines, and hormones, including TGF-beta. Identification of the binding sites in TGF-beta isoforms responsible for high affinity interaction with alpha(2)M many unravel the molecular basis of the complex formation. Here we demonstrate that among nine synthetic pentacosapeptides with overlapping amino acid sequences spanning the entire TGF-beta(1) molecule, the peptide (residues 41-65) containing Trp-52 exhibited the most potent activity in inhibiting the formation of complexes between (125)I-TGF-beta(1) and activated alpha(2)M (alpha(2)M*) as determined by nondenaturing polyacrylamide gel electrophoresis and by plasma clearance in mice. TGF-beta(2) peptide containing the homologous sequence and Trp-52 was as active as the TGF-beta(1) peptide, whereas the corresponding TGF-beta(3) peptide lacking Trp-52, was inactive. The replacement of the Trp-52 with alanine abolished the inhibitory activities of these peptides. (125)I-TGF-beta(3), which lacks Trp-52, bound to alpha(2)M* with an affinity lower than that of (125)I-TGF-beta(1). Furthermore, unlabeled TGF-beta(3) and the mutant TGF-beta(1)W52A, in which Trp-52 was replaced with alanine, were less potent than unlabeled TGF-beta(1) in blocking I(125)-TGF-beta(1) binding to alpha(2)M*. TGF-beta(1) and TGF-beta(2) peptides containing Trp-52 were also effective in inhibiting I(125)-nerve growth factor binding to alpha(2)M*. Tauhese results suggest that Trp-52 is involved in high affinity binding of TGF-beta to alpha(2)M*. They also imply that TGF-beta and other growth factors/cytokines/hormones may form complexes with alpha(2)M* via a common mechanism involving the interactions between topologically exposed Trp and/or other hydrophobic residues and a hydrophobic region in alpha(2)M*. 相似文献
19.
The relationship between the gas-exchange characteristics of attached leaves of Zea mays L. and the contents of photosynthetic intermediates was examined at different intercellular partial pressure of CO2 and at different irradiances at a constant intercellular partial pressure of CO2. (i) The behaviour of the pools of the C4-cycle intermediates, phosphoenolpyruvate and pyruvate, provides evidence for light regulation of their consumption. However, light regulation of phosphoenolpyruvate carboxylase does not influence the assimilation rate at limiting intercellular partial pressures of CO2. (ii) A close correlation between the pools of phosphoenolpyruvate and glycerate-3-phosphate exists under many different flux conditions, consistent with the notion that the pools of C4 and C3 cycles are connected via the interconversion of glycerate-3-phosphate and phosphoenolpyruvate. (iii) The ratio of triose-phosphate to glycerate-3-phosphate is used as an indicator of the availability of ATP and NADPH. Changes of this ratio with CO2 and with irradiance are compared with results obtained in C3 leaves and indicate that the mechanism of regulation of carbon assimilation by light in leaves of C4 plants may differ from that in C3 plants. (iv) The behaviour of the ribulose-1,5-bisphosphate pool with CO2 and irradiance is contrasted with the behaviour of these pools measured in leaves of C3 plants.Abbreviations
P
i
intercellular CO2 pressure
- RuBP
ribulose-1,5-bisphosphate
- PEP
phosphoenolpyruvate
- triose-P
triose phosphates
- PGA
glycerate-3-phosphate 相似文献
20.
Four heptacarboxylic, six hexacarboxylic, and four pentacarboxylic porphyrins related to uroporphyrin-III by decarboxylation of one, two, or three of the acetic acid side chains have been synthesised as their methyl esters by application of the MacDonald or b-oxobilane methods, as appropriate. Comparison (mixed mp, “mixed” nmr spectra, and hplc) of the synthetic materials with the methyl esters of hepta-, hexa-, and pentacarboxylic porphyrins isolated from natural sources showed that the structures of the latter corresponded to the D-ring methyl, the DA-dimethyl, and the DAB-trimethyl analogs of uroporphyrin-III. Because the naturally occurring porphyrins arise by oxidation of intermediate porphyrinogens, we conclude that the enzymic decarboxylation of uroporphyrinogen-III to coproporphyrinogen-III takes place in a preferred sequential clockwise fashion (both in normal and abnormal metabolism) starting with the acetic acid moiety on the D-ring and followed by those on the A, B, and C rings. 相似文献