首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock'', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue ‘Dating species divergences using rocks and clocks’.  相似文献   

2.
The temperate South American lizard genus Liolaemus is the one of the most widely distributed and species‐rich genera of lizards on earth. The genus is divided into two subgenera, Liolaemus sensu stricto (the ‘Chilean group’) and Eulaemus (the ‘Argentino group’), a division that is supported by recent molecular and morphological data. Owing to a lack of reliable fossil data, previous studies have been forced to use either global molecular clocks, a standardized mutation rate adopted from previous studies, or the use of geological events as calibration points. However, simulations indicate that these types of assumptions may result in less accurate estimates of divergence times when clock‐like models or mutation rates are violated. We used a multilocus data set combined with a newly described fossil to provide the first calibrated phylogeny for the crown groups of the clade Eulaemus, and derive new fossil‐calibrated substitution rates (with error) of both nuclear and mtDNA gene regions for Eulaemus specifically. Divergence date estimates for each of the crown groups and appropriate rate estimates will provide the foundation for understanding rates of speciation, historical biogeography, and phylogeographical history for various clades in one of the most diverse lizard genera in the poorly studied Patagonian region. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 825–835.  相似文献   

3.
Betulaceae is a well‐defined family of Fagales, including six living genera and more than 160 modern species. Species of the family have high ecological and economic value for the abundant production of wood. However, phylogenetic relationships within Betulaceae have remained partly unresolved, likely due to the lack of a sufficient number of informative sites used in previous studies. Here, we re‐investigate the Betulaceae phylogeny with whole chloroplast genomes from 24 species (17 newly assembled), representing all genera of the family. All the 24 plastomes are relatively conserved with four regions, and each genome is ∼158–161 kb long, with 111 genes. The six genera are all monophyletic in the plastome tree, whereas Ostrya Scop. is nested in the Carpinus clade in the internal transcribed spacer tree. Further incongruencies are also detected within some genera between species. Incomplete lineage sorting and/or hybrid introgression during the diversification of the family could account for such incongruencies. Our dating analysis, based on four fossils, suggests that the most recent common ancestors of the extant genera date back to the mid‐ to late Miocene, and confirms that Betulaceae started to diversify in the upper Cretaceous/early Paleocene. Our results highlight the significance of using more informative sites in resolving phylogenetic relationships. Plastome data and increased taxon sampling will help to better understand the evolutionary history of Betulaceae in the future.  相似文献   

4.
Eastern North American plant biogeography has traditionally focused on two primary issues: (i) the location of temperate Pleistocene refugia and their proximity to the southern margin of the ice sheet during the last glacial maximum, and (ii) the origin of the temperate element of northern Latin America. While numerous population genetic and phylogeographical studies have focused on the first issue, few (if any) have considered the second. We addressed these issues by surveying 117 individuals from 24 populations of Liquidambar styraciflua (American sweetgum; Altingiaceae) across the southeastern USA, eastern Mexico, and Guatemala, using more than 2200 bp of chloroplast DNA sequence data. To specifically address the issue of timing, we estimated intraspecific divergence times on the basis of multiple fossil-based calibration points, using taxa from Altingiaceae ( Liquidambar and Altingia ) and Hammamelidaceae ( Hamamelis ) as outgroups. More than half of the sampled localities exhibited multiple haplotypes. Remarkably, the greatest variation was observed within the USA, with Mexico and Guatemala sharing widespread haplotypes with Texas, Mississippi, Kentucky, Ohio, and northern Virginia. This lack of differentiation suggests shared ancestral polymorphisms, and that the genetic signal we observed is older than the disjunction itself. Our data provide support for previously proposed hypotheses of Pleistocene refugia in peninsular Florida and along the eastern Atlantic, but also for deeper divergences (~8 million years ago) within the USA. These patterns reflect a dynamic biogeographical history for eastern North American trees, and emphasize the importance of the inclusion of a temporal component in any phylogeographical study.  相似文献   

5.
6.
Madagascar is renowned for its unparalleled species richness and levels of endemism, which have led, in combination with species extinction caused by an unprecedented rate of anthropogenic deforestation, to its designation as one of the most important biodiversity hotspots. It is home to 10 650 species (84% endemic) of angiosperms in 1621 genera (19% endemic). During the last two centuries, botanists have focused their efforts on the provision of a taxonomic framework for the flora of the island, but much remains to be investigated regarding the evolutionary processes that have shaped Madagascan botanical diversity. In this article, we review the current state of phylogenetic and biogeographical knowledge of the endemic angiosperm genera. We also propose a new stratified biogeographical model, based on palaeogeographical evidence, allowing the inference of the spatio‐temporal history of Madagascan taxa. The implications of past climate change and extinction events on the evolutionary history of the endemic genera are also discussed in depth. Phylogenetic information was available for 184 of the 310 endemic genera (59.3%) and divergence time estimates were available for 67 (21.6%). Based on this evidence, we show the importance of phylogenetic clustering in the assemblage of the current Madagascan diversity (26% of the genera have a sister lineage from Madagascar) and confirm the strong floristic affinities with Africa, South‐East Asia and India (22%, 9.1% and 6.2% of the genera, respectively). The close links with the Comoros, Mascarenes and Seychelles are also discussed. These results also support an Eocene/Oligocene onset for the origin of the Madagascan generic endemic flora, with the majority arising in the Miocene or more recently. These results therefore de‐emphasize the importance of the Gondwanan break‐up on the evolution of the flora. There is, however, some fossil evidence suggesting that recent extinctions (e.g. Sarcolaenaceae, a current Madagascan endemic, in southern Africa) might blur vicariance patterns and favour dispersal explanations for current biodiversity patterns. © 2013 The Linnean Society of London  相似文献   

7.
8.
Sa?lam et al. recently argued that the Devil's Hole pupfish (Cyprinodon diabolis), a conservation icon with the smallest known species range, was isolated 60 kya based on a new genomic data set. If true, this would be a radically long timescale for any species to persist at population sizes <500 individuals, in contrast to conservation genetics theory. However, here we argue that their analyses and interpretation are inappropriate. They placed highly restrictive prior distributions on divergence times, which do not appropriately model the large uncertainty and result in removing nearly all uncertainty from their analyses, and chose among models by assuming that pupfishes exhibit human mutation rates. We reanalysed their data with their same methods, only using an informative prior for the plausible range of mutation rates observed across vertebrates, including an estimate of the genomewide mutation rate from a pedigree analysis of cichlid fishes. In fact, Saglam et al.'s phylogenetic data support much younger median divergence times for C. diabolis, ranging from 6.2 to 19.9 kya, overlapping with our previous phylogenetic divergence time estimates of 2.5–6.5 kya. There are many reasons to suspect an even younger age and higher mutation rate in C. diabolis, as we previously estimated, due to their high metabolism, small adult size, small population size and severe environmental stressors. In conclusion, our results highlight the need for measuring mutation rate in this fascinating species and suggest that the ages of endangered taxa present in small, isolated populations may frequently be overestimated.  相似文献   

9.
Comparative study of character evolution in the shorebirds is presently limited because the phylogenetic placement of some enigmatic genera remains unclear. We therefore used Bayesian methods to obtain a well-supported phylogeny of 90 recognized genera using 5 kb of mitochondrial and nuclear sequences. The tree comprised three major clades: Lari (gulls, auks and allies plus buttonquails) as sister to Scolopaci (sandpipers, jacanas and allies), and in turn sister to Charadrii (plovers, oystercatchers and allies), as in previous molecular studies. Plovers and noddies were not recovered as monophyletic assemblages, and the Egyptian plover Pluvianus is apparently not a plover. Molecular dating using multiple fossil constraints suggests that the three suborders originated in the late Cretaceous between 79 and 102 Mya, and at least 14 lineages of modern shorebirds survived the mass extinction at the K/T boundary. Previous difficulties in determining the phylogenetic relationships of enigmatic taxa reflect the fact that they are well-differentiated relicts of old, genus-poor lineages. We refrain from suggesting systematic revisions for shorebirds at this time because gene trees may fail to recover the species tree when long branches are connected to deep, shorter branches, as is the case for some of the enigmatic taxa.  相似文献   

10.
The molecular clock provides the only viable means of establishing realistic evolutionary timescales but it remains unclear how best to calibrate divergence time analyses. Calibrations can be applied to the tips and/or to the nodes of a phylogeny. Tip-calibration is an attractive approach since it allows fossil species to be included alongside extant relatives in molecular clock analyses. However, most fossil species are known from multiple stratigraphical horizons and it remains unclear how such age ranges should be interpreted to codify tip-calibrations. We use simulations and empirical data to explore the impact on precision and accuracy of different approaches to informing tip-calibrations. In particular, we focus on the effect of using tip-calibrations defined using the oldest vs youngest stratigraphic occurrences, the full stratigraphical range, as well as confidence intervals on these data points. The results of our simulations show that using different calibration approaches leads to different divergence-time estimates and demonstrate that concentrating tip-calibrations near the root of the dated phylogeny improves both precision and accuracy of estimated divergence times. Finally, our results indicate that the highest levels of accuracy and precision are achieved when fossil tips are calibrated based on the fossil occurrence from which the morphological data were derived. These trends were corroborated by analysis of an empirical dataset for Ursidae. Overall, we conclude that tip-dating analyses should, in particular, employ tip calibrations close to the root of the tree and they should be calibrated based on the age of the fossil used to inform the morphological data used in Total Evidence Dating.  相似文献   

11.
We reassess the phylogenetic relationships of genera of hemiphractine hylid frogs (Marsupial Treefrogs) and discuss the evolution of several distinctive characters within this group using parsimony analysis. Fifty-one morphological and life-history characters were sampled from two species of Cryptobatrachus , three species of Flectonotus , 17 species of Gastrotheca , all five species of Hemiphractus , and one species of Stefania as the ingroup and three hyline, one phyllomedusine, and one pelodryadine species as outgroups. Our results support the mon-ophyly of Flectonotus, Cryptobatrachus , and Hemiphractus. Gastrotheca is paraphyletic with respect to Hemiphractus , dorsal pouches were lost in the ancestor of Hemiphractus. Direct development is a synapomorphy for Hemiphractinae and tadpoles were regained independently several times. These results stand in stark contrast to the prevailing paradigm regarding marsupial frog relationships.  相似文献   

12.
We used partial DNA sequences of cytochrome b and 16S mitochondrial genes to determine the phylogenetic placement of salangid fishes and the generic relationships within the salangids. Our molecular data strongly support the monophyly of salangid fishes, the inclusion of salangids in the Osmeridae, and the sister group relationship between salangids and osmerids. Our analyses suggest that Plecoglossus can be separated from all the other salangids and osmerids. Mallotus and Hypomesus are clustered within Osmerinae, rather than allied with Salanginae. As regards the relationships within the salangids, our analyses are incongruent with all previous classification hypotheses. Our phylogenetic analyses support the sister group relationships between Protosalanx and Neosalanx, and between Salanx and Hemisalanx. More evidences show that Leucosoma is more closely related to the Salanx-Hemisalanx clade, while Salangichthys forms part of an unresolved basal polytomy.  相似文献   

13.
14.
Camellia contains tea, oil camellia, and camellias which benefit people globally. Its infrageneric classification is, however, controversial and unstable, and former phylogenetic analyses failed to yield robust and consistent trees. Here, we aimed to reconstruct a robust phylogenetic tree, date all clades and discuss the evolutionary history of Camellia. Emphasizing the taxonomically comprehensive sampling rather than more DNA data, orthologous nuclear RPB2 introns 11–15 and 23, and waxy were sequenced for 99 taxa of Camellia to reconstruct its phylogenetic history. Ten clades are identified in Camellia: Camellia II, Camelliopsis, Corallina, Furfuracea, Heterogenea, Paracamellia, Piquetia, Stereocarpus, Thea and Yellow camellias II. Camellia grijsii and C. shensiensis are not closely related with other oil camellias that form the clade Paracamellia. Sections Camelliopsis and Theopsis together form the clade Camelliopsis, while clade Furfuracea consists of sect. Furfuracea and C. hongkongensis. Camellia connata is separated from C. lanceolata but nested in the clade Heterogenea, and C. longissima is nested in the clade Thea, suggesting a new germplasm for tea breeding. Molecular dating using four fossil calibration points suggests that the crown age of Camellia is 39.5 Ma with clade Corallina probably the earliest infrageneric clade to diversify and the most widespread clade, Paracamellia, the latest. Our findings provide new insights into the phylogenetic relationships, systematics and evolutionary history of Camellia.  相似文献   

15.
The current distribution of the Neotropical ichthyofauna has been widely affected by the main geological events that occurred in South and Central America. However, robust biogeographic information is still scarce or absent for most fish families. The biogeographic relationships of the most diverse anablepid genus, Jenynsia, are herein analysed, using temporal and spatial approaches based on a total evidence dataset, including 167 morphological characters and seven nuclear genes, totalling 6075?bp. A time calibrated analysis recovered the origin of Jenynsia at the Miocene and the diversification of its two subgenera between the Late Miocene and Early Pliocene. This result combined with the analysis of reconstruction of ancestral states indicates that the ancestor of Jenynsia colonized the Paranean Sea, and the current distribution of the species of the genus is probably a result of geological events, including: (1) ancient connections between Iguaçu and upper Uruguay River basins; (2) sea level variation along the Pliocene in the South American Atlantic coast; and (3) the decrease of the Paranean Sea along the Pliocene and Pleistocene.  相似文献   

16.
Representatives of the cockroach superfamily Corydioidea are less sampled than members of the two other cockroach superfamilies (Blaberoidea and Blattoidea) due to the difficulty of collecting them in the field, accentuated by a general lack of knowledge on their biology. Their evolutionary relationships have not yet been investigated with a relevant sampling and are therefore poorly known. Here, we assess the phylogenetic relationships of 35 Corydioidea species with mitochondrial genomes and two nuclear gene fragments. Our sampling for Corydiidae comprises Corydiinae and Euthyrrhaphinae representatives, whereas our sampling for the remaining Corydioidea includes species belonging to genera Beybienkonus Qiu, Wang and Che, Compsodes Hebard, Ctenoneura Hanitsch and Nocticola Bolívar. We further infer their divergence times with molecular dating analyses relying on five fossil calibrations. We also carry out reconstructions of ancestral character states for 11 phenotypic and one biological traits. Our results recover two major Corydioidea clades, one consisting solely of Corydiidae (except Latindiinae) and the other of all remaining Corydioidea taxa. Based on the results of phylogenetic analyses, an updated classification of extant Corydioidea is proposed, where Latindiinae Handlirsch stat.rev. and Ctenoneurinae Qiu and Che, subfam.nov. are assigned to the family Nocticolidae Bolívar sensu nov . A new genus Pseudoeupolyphaga Qiu and Che, gen.nov. is also established within Corydiinae. Both the origin of crown Corydioidea and the divergence of the two major lineages are estimated to have occurred during the Triassic–Jurassic boundary. Ancestral character state reconstruction analyses also suggest an adaptive relationship between phenotypic characteristics and habitat preferences.  相似文献   

17.
18.
The genetic divergence and the phylogenetic relationships of six Atherina boyeri (freshwater and marine origin) and five Atherina hepsetus populations from Greece were investigated using partial sequence analysis of 12s rRNA, 16s rRNA and control region mtDNA segments. Three different well divergent groups were revealed; the first one includes A. boyeri populations living in the sea, the second includes A. boyeri populations living in the lakes and lagoons whereas the third one includes all A. hepsetus populations. Fifty-seven different haplotypes were detected among the populations studied. In all three mtDNA segments examined, sequence analysis revealed the existence of fixed haplotypic differences discriminating A. boyeri populations inhabiting the lagoon and the lakes from both the coastal A. boyeri and the A. hepsetus populations. The genetic divergence values estimated between coastal (marine) A. boyeri populations and those living in the lagoon and the lakes are of the same order of magnitude as those observed among coastal A. boyeri and A. hepsetus populations. The results obtained by different phylogenetic methods were identical. The deep sequence divergence with the fixed different haplotypes observed suggests the occurrence of a cryptic or sibling species within A. boyeri complex.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 151–161.  相似文献   

19.
Cacti are a large and diverse group of stem succulents predominantly occurring in warm and arid North and South America. Chloroplast DNA sequences of the trnK intron, including the matK gene, were sequenced for 70 ingroup taxa and two outgroups from the Portulacaceae. In order to improve resolution in three major groups of Cactoideae, trnL-trnF sequences from members of these clades were added to a combined analysis. The three exemplars of Pereskia did not form a monophyletic group but a basal grade. The well-supported subfamilies Cactoideae and Opuntioideae and the genus Maihuenia formed a weakly supported clade sister to Pereskia. The parsimony analysis supported a sister group relationship of Maihuenia and Opuntioideae, although the likelihood analysis did not. Blossfeldia, a monotypic genus of morphologically modified and ecologically specialized cacti, was identified as the sister group to all other Cactoideae. The tribe Cacteae was found to be sister to a largely unresolved clade comprising the genera Calymmanthium, Copiapoa, and Frailea, as well as two large and well-supported clades. Browningia sensu stricto (excluding Castellanosia), the two tribes Cereeae and Trichocereeae, and parts of the tribes Notocacteae and Rhipsalideae formed one clade. The distribution of this group is largely restricted to South America. The other clade consists of the columnar cacti of Notocacteae, various genera of Browningieae, Echinocereeae, and Leptocereeae, the tribes Hylocereeae and Pachycereeae, and Pfeiffera. A large portion of this latter group occurs in Central and North America and the Caribbean.  相似文献   

20.
The 24 extant crocodylian species are the remnants of a once much more diverse and widespread clade. Crocodylomorpha has an approximately 230 million year evolutionary history, punctuated by a series of radiations and extinctions. However, the group's fossil record is biased. Previous studies have reconstructed temporal patterns in subsampled crocodylomorph palaeobiodiversity, but have not explicitly examined variation in spatial sampling, nor the quality of this record. We compiled a dataset of all taxonomically diagnosable non‐marine crocodylomorph species (393). Based on the number of phylogenetic characters that can be scored for all published fossils of each species, we calculated a completeness value for each taxon. Mean average species completeness (56%) is largely consistent within subgroups and for different body size classes, suggesting no significant biases across the crocodylomorph tree. In general, average completeness values are highest in the Mesozoic, with an overall trend of decreasing completeness through time. Many extant taxa are identified in the fossil record from very incomplete remains, but this might be because their provenance closely matches the species’ present‐day distribution, rather than through autapomorphies. Our understanding of nearly all crocodylomorph macroevolutionary ‘events’ is essentially driven by regional patterns, with no global sampling signal. Palaeotropical sampling is especially poor for most of the group's history. Spatiotemporal sampling bias impedes our understanding of several Mesozoic radiations, whereas molecular divergence times for Crocodylia are generally in close agreement with the fossil record. However, the latter might merely be fortuitous, i.e. divergences happened to occur during our ephemeral spatiotemporal sampling windows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号