首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A parsimony analysis of 133 sequences of the nuclear ribosomal DNA ITS1 + 5.8S + ITS2 region from 71 taxa in Armeria was carried out. The presence of additive polymorphic sites (APS; occurring in 14 accessions) fits the reticulate scenario proposed in previous work for explaining the ITS pattern of variation on a much smaller scale and is based mainly on the geographical structure of the data, irrespective of taxonomic boundaries. Despite the relatively low bootstrap values and large polytomies, part of which are likely due to disruptive effects of reticulation and concerted evolution in these multicopy sequences, the ITS analysis has phylogenetic and biogeographic implications. APS detected in this study are consistent with hypothesized hybridization events, although biased concerted evolution, previously documented in the genus, needs to be invoked for specific cases and may be responsible for a possible “sink” effect in terminals from a large clade. The causes for sequences of the same species appearing in different clades (here termed transclade) are discussed.  相似文献   

2.
Phylogeny of Schistidium (Bryophyta, Grimmiaceae) was studied by comparing the nucleotide sequences of internal transcribed spacers ITS1-2 of nuclear rDNA and the trnT-trnD region of chloroplast DNA. Phylogenetic trees constructed based on nuclear and chloroplast sequences were consistent, comprising a basal grade and two large clades. Morphological characteristics specific for these clades were described. Secondary structures of ITS1 and ITS2 Schistidium species were modeled using thermodynamic criteria. Four different structures of the longest ITS1 hairpin were identified. These results were used to analyze possible paths of Schistidium evolution. Characteristics of the ITS2 secondary structure support the two major clades recognized in the phylogenetic trees.  相似文献   

3.
A parsimony analysis of 133 sequences of the nuclear ribosomal DNA ITS1+5.8S+ITS2 region from 71 taxa in Armeria was carried out. The presence of additive polymorphic sites (APS; occurring in 14 accessions) fits the reticulate scenario proposed in previous work for explaining the ITS pattern of variation on a much smaller scale and is based mainly on the geographical structure of the data, irrespective of taxonomic boundaries. Despite the relatively low bootstrap values and large polytomies, part of which are likely due to disruptive effects of reticulation and concerted evolution in these multicopy sequences, the ITS analysis has phylogenetic and biogeographic implications. APS detected in this study are consistent with hypothesized hybridization events, although biased concerted evolution, previously documented in the genus, needs to be invoked for specific cases and may be responsible for a possible "sink" effect in terminals from a large clade. The causes for sequences of the same species appearing in different clades (here termed transclade) are discussed.  相似文献   

4.
Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it difficult to determine whether these sequences represent conspecific or novel taxa. In this meta-analysis, over 2000 insufficiently identified Tuber sequences from 76 independent studies were analysed within a phylogenetic framework. Species ranges, host associates, geographical distributions and intra- and interspecific ITS variability were assessed. Over 99% of the insufficiently identified Tuber sequences grouped within clades composed of species with little culinary value (Maculatum, Puberulum and Rufum). Sixty-four novel phylotypes were distinguished including 36 known only from ectomycorrhizae or soil. Most species of Tuber showed 1-3% intraspecific ITS variability and >4% interspecific ITS sequence variation. We found 123 distinct phylotypes based on 96% ITS sequence similarity and estimated that Tuber contains a minimum of 180 species. Based on this meta-analysis, species in Excavatum, Maculatum and Rufum clades exhibit preference for angiosperm hosts, whereas those in the Gibbosum clade are preferential towards gymnosperms. Sixteen Tuber species (>13% of the known diversity) have putatively been introduced to continents or islands outside their native range.  相似文献   

5.
6.
Aim To infer phylogenetic relationships among Antirrhinum species and to reconstruct the historical distribution of observed sequence polymorphism through estimates of haplotype clades and lineage divergence. Location Antirrhinum is distributed primarily throughout the western Mediterranean, with 22 of 25 species in the Iberian Peninsula. Methods Plastid (83 trnS‐trnG and 83 trnK‐matK) and nuclear (87 ITS) sequences were obtained from 96 individuals representing 24 of the 25 Antirrhinum species. Sequences were analysed using maximum parsimony, Bayesian inference and statistical parsimony networking. Molecular clock estimates were obtained for plastid trnK‐matK sequences using the penalized likelihood approach. Results Phylogenetic results gave limited support for monophyletic groups within Antirrhinum. Fifty‐one plastid haplotypes were detected and 27 missing haplotypes inferred, which were all connected in a single, star‐like network. A significant number of species shared both the same haplotypes and the same geographical areas, primarily in eastern Iberia. Furthermore, many species harboured populations with unrelated haplotypes from divergent haplotype clades. Plastid haplotype distribution, together with nucleotide additivity in 59 of the 86 nuclear ribosomal ITS sequences, is interpreted as evidence of extensive hybridization. Lineage divergence estimates indicated that differentiation within Antirrhinum post‐dates the Miocene, when the Mediterranean climate was established. Main conclusions Incongruence between plastid sequences, nuclear sequences and taxonomic delimitation is interpreted as strong evidence of limited cladogenetic processes in Antirrhinum. Rather, extensive nucleotide additivities in ITS sequences in conjunction with haplotype and haplotype‐clade distributions related to geographical areas support both recent and ancient hybridization. This geographical pattern of Antirrhinum speciation, particularly in eastern Iberia, is congruent with isolation–contact–isolation processes in the Pleistocene.  相似文献   

7.
Forty-five sequences from members of all genera of Asteraceae indigenous to New Zealand and 50 published sequences representing the tribal diversity in the family were analyzed to assess the utility of ITS sequences to resolve phylogenetic relationships. Previous studies using chloroplast DNA sequences and morphology provided support for several clades in the Asteraceae, yet the relationships among some of these were uncertain. The results from ITS analysis were largely consistent with these earlier studies. The New Zealand species are included in at least six clades, most of these corresponding to recognized tribes. Our results have also clarified the tribal affinities of a few anomalous genera. Haastia, previously aligned with the Gnaphalieae or the Astereae, is nested in the Senecioneae. Centipeda, previously included in the Astereae or Anthemideae, emerges near the Heliantheae. The relationships of Abrotanella remain unresolved. Received August 8, 2001 Accepted November 6, 2001  相似文献   

8.
Fungi in the genus Tomentellopsis were subjected to molecular phylogenetic analyses in order to clarify species-level relationships and mycorrhiza-forming ability with coniferous and deciduous trees. Fungal nucleotide sequence data from the internal transcribed spacer of nuclear ribosomal DNA (ITS rDNA) region were obtained from fruitbodies, ectomycorrhiza and pure cultures. Maximum parsimony (MP), distance (neighbor joining, NJ) and maximum likelihood (ML) analyses of aligned ITS sequences highlighted three clades designated T. echinospora, T. submollis and T. bresadoliana. Sporocarp tissue and ectomycorrhizas, or isolated mycelia, previously described as Pinirhiza rosea, Piceirhiza rosea or Pink were clearly identified in a strongly supported T. submollis clade. Host-linked population variation in this clade was also noted that may reflect active speciation activity. A fungus isolated from Beige-type mycorrhizas formed on Scots pine seedlings appeared in the paraphyletic T. echinospora clade which included sequences showing greater divergence. The data provide a primary classification of Tomentellopsis species that is urgently needed in assessment of the importance of resupinate thelephoroid fungi in mycorrhizal communities associated with trees in coniferous and deciduous forest ecosystems.  相似文献   

9.
This investigation aimed to assess whether MALDI-TOF MS analysis of the proteome could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of peptide mass fingerprints would reveal apomorphies that could be useful in diagnosing species in this genus. One hundred and twenty nine morphologically and genetically well-characterized strains of Hypocrea and Trichoderma, belonging to 25 species in 8 phylogenetic clades, were analyzed by MALDI-TOF MS mass spectrometry. The resulting peak lists of individual samples were submitted to single-linkage cluster analysis to produce a taxonomic tree and were compared to ITS and tef1 sequences from GenBank. SuperSpectra™ for the 13 most relevant species of Trichoderma were computed. The results confirmed roughly previously defined clades and sections. With the exceptions of T. saturnisporum (Longibrachiatum Clade) and T. harzianum (Harzianum Clade), strains of individual species clustered very closely. T. polysporum clustered distantly from all other groups. The MALDI-TOF MS analysis accurately reflected the phylogenetic classification reported in recent publications, and, in most cases, strains identified by DNA sequence analysis clustered together by MALDI-TOF MS. The resolution of MALDI-TOF MS, as performed here, was roughly equivalent to ITS rDNA. The MALDI-TOF MS technique analyzes peptides and represents a rough equivalent to sequencing, making this method a useful adjunct for determination of species limits. It also allows simple, reliable, and quick species identification, thus representing a valid alternative to gene sequencing for species diagnosis of Trichoderma and other fungal taxa.  相似文献   

10.
Euphorbia (Euphorbiaceae) comprises over 2150 species and is thus the second-largest genus of flowering plants. In Europe, it is represented by more than 100 species with highest diversity in the Mediterranean area; the majority of taxa belong to subgenus Esula Pers., including about 500 taxa. The few available phylogenetic studies yielded contrasting results regarding the monophyly of subg. Esula, and the phylogenetic relationships among its constituents remain poorly understood. We have sampled DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and the plastid trnT-trnF region from about 100, predominantly European taxa of subg. Esula in order to infer its phylogenetic history. The plastid data support monophyly of subg. Esula whereas the ITS phylogeny, which is generally less resolved, is indecisive in this respect. Although some major clades have partly incongruent positions in the ITS and plastid phylogenies, the taxonomic content of the major terminal clades is congruent in both trees. As traditional sectional delimitations are largely not corroborated, an improved classification is proposed. Character state reconstruction illustrates that the annual life form developed independently several times in different clades of subgenus Esula from perennial ancestors, and that several morphological traits used in previous classifications of Euphorbia developed in parallel in different lineages.  相似文献   

11.
The internal transcribed spacer sequences spanning the regions between the 17S and 25S rRNAs (ITS1 and ITS2) and including the complete sequence of the 5.8S rRNA were used for phylogenetic analyses. This approach to define phylogenetic relationships within the genus Tricholoma was tested using different isolates of T. terreum. Fruitbodies identified in nature were analysed in order to allow use of morphology for taxonomy. The isolates from different locations were closely related as could be expected for one species. Thus, the method could be applied to different Tricholoma species. Three clusters within the genus Tricholoma can be distinguished with four additional species not included in any of these clusters. Molecular analyses of two Cortinarius species confirm a phylogenetically distinct genus.  相似文献   

12.
Abstract The Mediterranean species complex of Senecio serves to illustrate evolutionary processes that are likely to confound phylogenetic inference, including rapid diversification, gene tree‐species tree discordance, reticulation, interlocus concerted evolution, and lack of complete lineage sorting. Phylogeographic patterns of chloroplast DNA (cpDNA) haplotype variation were studied by sampling 156 populations (502 individuals) across 18 species of the complex, and a species phylogeny was reconstructed based on sequences from the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. For a subset of species, randomly amplified polymorphic DNAs (RAPDs) provided reference points for comparison with the cpDNA and ITS datasets. Two classes of cpDNA haplotypes were identified, with each predominating in certain parts of the Mediterranean region. However, with the exception of S. gallicus, intraspecific phylogeographic structure is limited, and only a few haplotypes detected were species‐specific. Nuclear sequence divergence is low, and several unresolved phylogenetic groupings are suggestive of near simultaneous diversification. Two well‐supported ITS clades contain the majority of species, amongst which there is a pronounced sharing of cpDNA haplotypes. Our data are not capable of diagnosing the relative impact of reticulation versus insufficient lineage sorting for the entire complex. However, there is firm evidence that S. flavus subsp. breviflorus and S. rupestris have acquired cpDNA haplotypes and ITS sequences from co‐occurring species by reticulation. In contrast, insufficient lineage sorting is a viable hypothesis for cpDNA haplotypes shared between S. gallicus and its close relatives. We estimated the minimum coalescent times for these haplotypes by utilizing the inferred species phylogeny and associated divergence times. Our data suggest that ancestral cpDNA polymorphisms may have survived for ca. 0.4–1.0 million years, depending on molecular clock calibrations.  相似文献   

13.
The first comprehensive overview of intra‐ and interspecific variation within the genus Corvus as well as first insights into the phylogenetic relationships of its species is presented. DNA sequences of the mitochondrial control region were obtained from 34 of the 40 described species (including subspecies: 56 taxa). As the study was based mainly on museum material, several specimens did not yield the full length marker sequence. In these cases, only a short section of the control region could be analysed. Nevertheless, even these individuals could be assigned tentatively to clades established on the full length marker sequence. Inclusion of sequences of other corvid genera as available in GenBank clearly confirmed the monophyly of the genus Corvus. Within the Corvus clade several distinct subclades can be distinguished. Some represent lineages of single species or species pairs while other clades are composed of many species. In general, the composition of the clades reflects geographical contiguousness and confirms earlier assumptions of a Palearctic origin of the genus Corvus with several independent colonizations of the Nearctic and the Aethiopis. The Australasian radiation seems to be derived from a single lineage. The distribution of plumage colour in the phylogenetic tree indicates that the pale markings evolved several times independently. The white/grey plumage colour pattern – which is found also in other genera of the family Corvidae, for example, in Pica– occurs already in the species pair representing the first split within the genus Corvus (Corvus monedula, Corvus dauuricus). Thus, reversal to full black colour seems to have occurred as well. The use of colour traits as a phylogenetic marker within Corvus should be considered with severe caution.  相似文献   

14.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

15.
How Quaternary climatic oscillations affected range distributions and intraspecific divergence of alpine plants on the Qinghai‐Tibetan Plateau (QTP) remains largely unknown. Here, we report a survey of chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variation aimed at exploring the phylogeographical history of the QTP alpine endemic Aconitum gymnandrum. We sequenced three cpDNA fragments (rpl20–rps12 intergenic spacer, the trnV intron and psbA‐trnH spacer) and also the nuclear (ITS) region in 245 individuals from 23 populations sampled throughout the species’ range. Two distinct lineages, with eastern and western geographical distributions respectively, were identified from a phylogenetic analysis of ITS sequence variation. Based on a fast substitution rate, these were estimated to have diverged from each other in the early Pleistocene approximately 1.45 Ma. The analysis of cpDNA variation identified nine chlorotypes that clustered into two major clades that were broadly congruent in geographical distribution with the two ITS lineages. The east–west split of cpDNA divergence was supported by an amova which partitioned approximately half of the total variance between these two groups of populations. Analysis of the spatial distribution of chlorotypes showed that each clade was subdivided into two groups of populations such that a total of four population groups existed in the species. It is suggested that these different groups derive from four independent glacial refugia that existed during the Last Glacial Maximum (LGM), and that three of these refugia were located at high altitude on the QTP platform itself at that time. Coalescent simulation of chlorotype genealogies supported both an early Pleistocene origin of the two main cpDNA clades and also the ‘four‐refugia’ hypothesis during the LGM. Two previous phylogeographical studies of QTP alpine plants indicated that such plants retreated to refugia at the eastern/south‐eastern plateau edge during the LGM and/or previous glacial maxima. However, the results for A. gymnandrum suggest that at least some of these cold‐tolerant species may have also survived centrally on the QTP platform throughout the Quaternary.  相似文献   

16.
We used an ITS2 primary and secondary structure and Compensatory Base Changes (CBCs) analyses on new French and Spanish Dunallela salina strains to investigate their phylogenetic position and taxonomic status within the genus Dunaliella. Our analyses show a great diversity within D. salina (with only some clades not statistically supported) and reveal considerable genetic diversity and structure within Dunaliella, although the CBC analysis did not bolster the existence of different biological groups within this taxon. The ITS2 sequences of the new Spanish and French D. salina strains were very similar except for two of them: ITC5105 "Janubio" from Spain and ITC5119 from France. Although the Spanish one had a unique ITS2 sequence profile and the phylogenetic tree indicates that this strain can represent a new species, this hypothesis was not confirmed by CBCs, and clarification of its taxonomic status requires further investigation with new data. Overall, the use of CBCs to define species boundaries within Dunaliella was not conclusive in some cases, and the ITS2 region does not contain a geographical signal overall.  相似文献   

17.
Among four species of Phytophthora tested, only Ph. capsici and Ph. tropicalis showed the same length for DNA sequence for both internal transcribed spacer (ITS)1 and ITS2 of ribosomal DNA. Phytophthora palmivora and P. nicotianae have lengths different from each other, and from the other two species. Although A1 and A2 types of Ph. capsici differ from each other by only one nucleotide, there are 10 different nucleotides between A1 and A2 types of Ph. tropicalis. Phylogenetic analysis of combined ITS sequences identified four clades each consisting A1 and A2 mating types of same species. The neighbor‐joining and maximum parsimony trees show that Ph. tropicalis (A2) is clustered with the clade of two isolates of Ph. capsici before joining the clade of A1 and two other isolates of Ph. tropicalis from GenBank. Our results support the separation of Ph. tropicalis and demonstrate the need to sequence more than a single isolate of a species in the study of molecular phylogeny of Phytophthora. The phylogenetic trees also suggest that Ph. tropicalis (A2) may represent a transitional isolate in the process of species evolution.  相似文献   

18.
The Internal Transcribed Spacer (ITS) regions of ribosomal DNA are widely used as markers for phylogenetic analyses and environmental sampling from a variety of organisms including fungi, plants, and animals. In theory, concerted evolution homogenizes multicopy genes so that little or no variation exists within populations or individuals. However, contrary to theory, ITS variation has been confirmed in populations and individuals from a diverse range of eukaryotes. The presence of intraspecific and intra-individual variation in multicopy genes has important implications for ecological and phylogenetic studies, yet relatively little is known about natural variation of these genes, particularly at the community level. In this study, we examined intraspecific and intra-sporocarp ITS variation by DNA sequencing from sporocarps and pooled roots from 68 species of ectomycorrhizal fungi collected at a single site in a Quercus woodland. We detected ITS variation in 27 species, roughly 40% of the taxa examined. Although intraspecific ITS variation was generally low (0.16–2.85%, mean = 0.74%), it was widespread within this fungal community. We detected ITS variation in both sporocarps and ectomycorrhizal roots, and variation was present within species of Ascomycota and Basidiomycota, two distantly related lineages within the Fungi. We discuss the implications of such widespread ITS variability with special reference to DNA-based environmental sampling from diverse fungal communities. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Identification of Cladophora species is challenging due to conservation of gross morphology, few discrete autapomorphies, and environmental influences on morphology. Twelve species of marine Cladophora were reported from North Carolina waters. Cladophora specimens were collected from inshore and offshore marine waters for DNA sequence and morphological analyses. The nuclear‐encoded rRNA internal transcribed spacer regions (ITS) were sequenced for 105 specimens and used in molecular assisted identification. The ITS1 and ITS2 region was highly variable, and sequences were sorted into ITS Sets of Alignable Sequences (SASs). Sequencing of short hyper‐variable ITS1 sections from Cladophora type specimens was used to positively identify species represented by SASs when the types were made available. Secondary structures for the ITS1 locus were also predicted for each specimen and compared to predicted structures from Cladophora sequences available in GenBank. Nine ITS SASs were identified and representative specimens chosen for phylogenetic analyses of 18S and 28S rRNA gene sequences to reveal relationships with other Cladophora species. Phylogenetic analyses indicated that marine Cladophorales were polyphyletic and separated into two clades, the Cladophora clade and the “Siphonocladales” clade. Morphological analyses were performed to assess the consistency of character states within species, and complement the DNA sequence analyses. These analyses revealed intra‐ and interspecific character state variation, and that combined molecular and morphological analyses were required for the identification of species. One new report, Cladophora dotyana, and one new species Cladophora subtilissima sp. nov., were revealed, and increased the biodiversity of North Carolina marine Cladophora to 14 species.  相似文献   

20.
We isolated Rhizoctonia-like fungi from populations of the threatened orchid Cypripedium macranthos. In ultrastructural observations of the septa, the isolates had a flattened imperforate parenthesome consisting of two electron-dense membranes bordered by an internal electron-lucent zone, identical to the septal ultrastructure of Rhizoctonia repens (teleomorph Tulasnella), a mycorrhizal fungus of many orchid species. However, hyphae of the isolates did not fuse with those of known tester strains of R. repens and grew less than half as fast as those of R. repens. In phylogenetic analyses, sequences for rDNA and internal transcribed spacer (ITS) regions of the isolates were distinct from those of the taxonomically identified species of Tulasnella. On the basis of the ITS sequences, the isolates clustered into two groups that corresponded exactly with the clades demonstrated for other Cypripedium spp. from Eurasia and North America despite the geographical separation, suggesting high specificity in the Cypripedium–fungus association. In addition, the two phylogenetic groups corresponded to two different plant clones at different developmental stages. The fungi from one clone constituted one group and did not belong to the other fungal group isolated from the other clone. The possibility of switching to a new mycorrhizal partner during the orchid’s lifetime is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号