首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Solute Carriers (SLCs) are membrane proteins that regulate transport of many types of substances over the cell membrane. The SLCs are found in at least 46 gene families in the human genome. Here, we performed the first evolutionary analysis of the entire SLC family based on whole genome sequences. We systematically mined and analyzed the genomes of 17 species to identify SLC genes. In all, we identified 4,813 SLC sequences in these genomes, and we delineated the evolutionary history of each of the subgroups. Moreover, we also identified ten new human sequences not previously classified as SLCs, which most likely belong to the SLC family. We found that 43 of the 46 SLC families found in Homo sapiens were also found in Caenorhabditis elegans, whereas 42 of them were also found in insects. Mammals have a higher number of SLC genes in most families, perhaps reflecting important roles for these in central nervous system functions. This study provides a systematic analysis of the evolutionary history of the SLC families in Eukaryotes showing that the SLC superfamily is ancient with multiple branches that were present before early divergence of Bilateria. The results provide foundation for overall classification of SLC genes and are valuable for annotation and prediction of substrates for the many SLCs that have not been tested in experimental transport assays.  相似文献   

2.
Solute carriers (SLCs) is the largest group of transporters, embracing transporters for inorganic ions, amino acids, neurotransmitters, sugars, purines and fatty acids among other substrates. We mined the finished assembly of the human genome using Hidden Markov Models (HMMs) obtaining a total of 384 unique SLC sequences. Detailed clustering and phylogenetic analysis of the entire SLC family showed that 15 of the families place into four large phylogenetic clusters with the largest containing eight SLC families, suggesting that many of the distinct families of SLCs have a common evolutionary origin. This study represents the first overall genomic roadmap of the SLCs providing large sequence sets and clarifies the phylogenetic relationships among the families of the second largest group of membrane proteins.  相似文献   

3.
The human solute carriers (SLCs) comprise over 400 different transporters, organized into 65 families (http://slc.bioparadigms.org/) based on their sequence homology and transport function. SLCs are responsible for transporting extraordinarily diverse solutes across biological membranes, including inorganic ions, amino acids, lipids, sugars, neurotransmitters and drugs. Most of these membrane proteins function as coupled symporters (co-transporters) utilizing downhill ion (H+ or Na+) gradients as the driving force for the transport of substrate against its concentration gradient into cells. Other members work as antiporters (exchangers) that typically contain a single substrate-binding site with an alternating access mode of transport, while a few members exhibit channel-like properties. Dysfunction of SLCs is correlated with numerous human diseases and therefore they are potential therapeutic drug targets. In this review, we identified all of the SLC crystal structures that have been determined, most of which are from prokaryotic species. We further sorted all the SLC structures into four main groups with different protein folds and further discuss the well-characterized MFS (major facilitator superfamily) and LeuT (leucine transporter) folds. This review provides a systematic analysis of the structure, molecular basis of substrate recognition and mechanism of action in different SLC family members.  相似文献   

4.

Background

Zinc is an essential trace element in organisms, which serves as a cofactor for hundreds of enzymes that are involved in many pivotal biological processes including growth, development, reproduction and immunity. Therefore, the homeostasis of zinc in the cell is fundamental. The zinc transporter gene family is a large gene family that encodes proteins which regulate the movement of zinc across cellular and intracellular membranes. However, studies on teleost zinc transporters are mainly limited to model species.

Methodology/Principal Findings

We identified a set of 37 zinc transporters in common carp genome, including 17 from SLC30 family (ZnT), and 20 from SLC39 family (ZIP). Phylogenetic and syntenic analysis revealed that most of the zinc transporters are highly conserved, though recent gene duplication and gene losses do exist. Through examining the copy number of zinc transporter genes across several vertebrate genomes, thirteen zinc transporters in common carp are found to have undergone the gene duplications, including SLC30A1, SLC30A2, SLC30A5, SLC30A7, SLC30A9, SLC30A10, SLC39A1, SLC39A3, SLC39A4, SLC39A5, SLC39A6, SLC39A7 and SLC39A9. The expression patterns of all zinc transporters were established in various tissues, including blood, brain, gill, heart, intestine, liver, muscle, skin, spleen and kidney, and showed that most of the zinc transporters were ubiquitously expressed, indicating the critical role of zinc transporters in common carp.

Conclusions

To some extent, examination of gene families with detailed phylogenetic or orthology analysis could verify the authenticity and accuracy of assembly and annotation of the recently published common carp whole genome sequences. The gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp zinc transporters provides an important genomic resource for future biochemical, toxicological and physiological studies of zinc in teleost.  相似文献   

5.
溶质转运蛋白(solute carriers,SLC)超家族是人类细胞膜(含胞内膜)上最重要的膜转运蛋白家族之一,它参与了细胞间的物质运输、能量传递、营养代谢、信号传导等重要生理活动。SLC转运蛋白超家族包含52个亚家族,共有400多名成员。研究表明,人类基因突变所致SLC蛋白表达异常或功能缺陷与糖尿病、高血压、抑郁症等多种重大疾病密切相关,使得该家族蛋白的功能研究近年来备受关注。SLC转运家族蛋白三维结构的解析有助于阐述其底物选择性结合与转运的精确分子机制,为研究该家族功能相关疾病的分子机理以及针对理性药物研发奠定了精细的三维结构基础。本文对近年来溶质转运蛋白超家族的结构及功能研究进展进行了总结,试图对该家族的共性规律进行阐述。  相似文献   

6.
The drug/metabolite transporter superfamily.   总被引:21,自引:0,他引:21  
Previous work defined several families of secondary active transporters, including the prokaryotic small multidrug resistance (SMR) and rhamnose transporter (RhaT) families as well as the eukaryotic organellar triose phosphate transporter (TPT) and nucleotide-sugar transporter (NST) families. We show that these families as well as several other previously unrecognized families of established or putative secondary active transporters comprise a large ubiquitous superfamily found in bacteria, archaea and eukaryotes. We have designated it the drug/metabolite transporter (DMT) superfamily (transporter classification number 2.A.7) and have shown that it consists of 14 phylogenetic families, five of which include no functionally well-characterized members. The largest family in the DMT superfamily, the drug/metabolite exporter (DME) family, consists of over 100 sequenced members, several of which have been implicated in metabolite export. Each DMT family consists of proteins with a distinctive topology: four, five, nine or 10 putative transmembrane alpha helical spanners (TMSs) per polypeptide chain. The five TMS proteins include an N-terminal TMS lacking the four TMS proteins. The full-length proteins of 10 putative TMSs apparently arose by intragenic duplication of an element encoding a primordial five-TMS polypeptide. Sequenced members of the 14 families are tabulated and phylogenetic trees for all the families are presented. Sequence and topological analyses allow structural and functional predictions.  相似文献   

7.
Members of the solute carrier family 25 (SLC25) are known to transport molecules over the mitochondrial membrane. In this paper we present 14 novel members of SLC25 family in human. These were provided with following gene symbols by the HGNC: SLC25A32, SLC25A33, SLC25A34, SLC25A35, SLC25A37, SLC25A38, SLC25A39, SLC25A40, SLC25A41, SLC25A42, SLC25A43, SLC25A44, SLC25A45, and SLC25A46. We also identified the orthologues for these genes in rat and mouse. Moreover, we found yeast orthologues for 9 of these genes and show that the predicted substrate binding residues are highly conserved in the human and yeast proteins. We performed a comprehensive tissue localization study for 9 of these genes on a panel of 30 rat tissues with quantitative real-time polymerse chain reaction. We detected their mRNA in a wide number of tissues, both in brain and in periphery. This study provides an overall roadmap of the repertoire of the SLC25 family in mammals, showing that there are at least 46 genes in the human genome coding for mitochondrial transporters.  相似文献   

8.
Transporters in the human genome are grouped in solute carrier families (SLC). The SLC6 family is one of the biggest transporter families in the human genome comprising 20 members. It is usually referred to as the neurotransmitter transporter family because its founding members encode transporters for the neurotransmitters GABA, noradrenaline, serotonin and dopamine. The family also includes a number of 'orphan' transporters, the function of which has remained elusive until recently. Identification of the broadly specific neutral amino acid transporter SLC6A19 (also called B(0)AT1) suggested that all orphan transporters may in fact be amino acid transporters. This was subsequently confirmed by the identification of SLC6A20 as the long-sought IMINO system, a proline transporter found in kidney, intestine and brain. Very recently, SLC6A15 was identified as the neutral amino acid transporter B(0)AT2. All amino acid transporters appear to cotransport only 1Na(+) together with the amino acid substrate. Both, B(0)AT1 and B(0)AT2 are chloride independent, whereas IMINO is chloride dependent. The amino acid transporters of the SLC6 family are functionally and sequence related to the recently crystallized leucine transporter from Aquifex aeolicus. The structure elegantly explains many of the mechanistic features of the SLC6 amino acid transporters.  相似文献   

9.
Solute carrier (SLCs) transporters mediate the transport of a broad range of solutes across biological membranes. Dysregulation of SLCs has been associated with various pathologies, including metabolic and neurological disorders, as well as cancer and rare diseases. SLCs are therefore emerging as key targets for therapeutic intervention with several recently approved drugs targeting these proteins. Unlocking this large and complex group of proteins is essential to identifying unknown SLC targets and developing next-generation SLC therapeutics. Recent progress in experimental and computational techniques has significantly advanced SLC research, including drug discovery. Here, we review emerging topics in therapeutic discovery of SLCs, focusing on state-of-the-art approaches in structural, chemical, and computational biology, and discuss current challenges in transporter drug discovery.  相似文献   

10.
The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα), where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adaptation to fasting, we identified Major facilitator superfamily domain-containing protein 2a (Mfsd2a) as a fasting-induced gene regulated by both PPARα and glucagon signaling in the liver. MFSD2A is a cell-surface protein homologous to bacterial sodium-melibiose transporters. Hepatic expression and turnover of MFSD2A is acutely regulated by fasting/refeeding, but expression in the brain is constitutive. Relative to wildtype mice, gene-targeted Mfsd2a knockout mice are smaller, leaner, and have decreased serum, liver and brown adipose triglycerides. Mfsd2a knockout mice have normal liver lipid metabolism but increased whole body energy expenditure, likely due to increased β-oxidation in brown adipose tissue and significantly increased voluntary movement, but surprisingly exhibited a form of ataxia. Together, these results indicate that MFSD2A is a nutritionally regulated gene that plays myriad roles in body growth and development, motor function, and lipid metabolism. Moreover, these data suggest that the ligand(s) that are transported by MFSD2A play important roles in these physiological processes and await future identification.  相似文献   

11.
12.
The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily (TC #2.A.66) consists of four previously recognized families: (a) the ubiquitous multi-drug and toxin extrusion (MATE) family; (b) the prokaryotic polysaccharide transporter (PST) family; (c) the eukaryotic oligosaccharidyl-lipid flippase (OLF) family and (d) the bacterial mouse virulence factor family (MVF). Of these four families, only members of the MATE family have been shown to function mechanistically as secondary carriers, and no member of the MVF family has been shown to function as a transporter. Establishment of a common origin for the MATE, PST, OLF and MVF families suggests a common mechanism of action as secondary carriers catalyzing substrate/cation antiport. Most protein members of these four families exhibit 12 putative transmembrane alpha-helical segments (TMSs), and several have been shown to have arisen by an internal gene duplication event; topological variation is observed for some members of the superfamily. The PST family is more closely related to the MATE, OLF and MVF families than any of these latter three families are related to each other. This fact leads to the suggestion that primordial proteins most closely related to the PST family were the evolutionary precursors of all members of the MOP superfamily. Here, phylogenetic trees and average hydropathy, similarity and amphipathicity plots for members of the four families are derived and provide detailed evolutionary and structural information about these proteins. We show that each family exhibits unique characteristics. For example, the MATE and PST families are characterized by numerous paralogues within a single organism (58 paralogues of the MATE family are present in Arabidopsis thaliana), while the OLF family consists exclusively of orthologues, and the MVF family consists primarily of orthologues. Only in the PST family has extensive lateral transfer of the encoding genes occurred, and in this family as well as the MVF family, topological variation is a characteristic feature. The results serve to define a large superfamily of transporters that we predict function to export substrates using a monovalent cation antiport mechanism.  相似文献   

13.
The amino acid-polyamine-organocation (APC) superfamily has been shown to include five recognized families, four of which are specific for amino acids and their derivatives. Recent high-resolution X-ray crystallographic data have shown that four additional transporter families (BCCT, TC No. 2.A.15; SSS, 2.A.21; NSS, 2.A.22; and NCS1, 2.A.39), transporting a wide range of solutes, exhibit sufficiently similar folds to suggest a common evolutionary origin. We have used established statistical methods, based on sequence similarity, to show that these families are, in fact, members of the APC superfamily. We also identify two additional families (NCS2, 2.A.40; SulP, 2.A.53) as being members of this superfamily. Repeat sequences, each having five transmembrane α-helical segments and arising via ancient intragenic duplications, are demonstrated for all of these families, further strengthening the conclusion of homology. The APC superfamily appears to be the second largest superfamily of secondary carriers, the largest being the major facilitator superfamily (MFS). Although the topology of the members of the APC superfamily differs from that of the MFS, both families appear to have arisen from a common ancestral 2 TMS hairpin structure that underwent intragenic triplication followed by loss of a TMS in the APC family, to give the repeat units that are characteristic of these two superfamilies.  相似文献   

14.
Long chain PUFA contents in plasma and liver both exhibited diurnal rhythms in pigs. However, whether mRNA expression of amino acid transporter and circadian gene Cry in intestinal mucosa is also rhythmic is yet to be known. The purpose of this study aims to investigate the diurnal rhythm in mRNA expression of genes encoding amino acid transporter and whether their rhythm was related to the expression of circadian gene Cry in intestinal mucosa of piglets. Thirty-six piglets (Duroc?×?Landrace?×?Large Yorkshire) at the age of 35 days were selected and fed for three weeks, and then samples were collected at 3:00 am (Clo3), 7:00 am (Clo7), 11:00 am (Clo11), 3:00 pm (Clo15), 7:00 pm (Clo19), and 11:00 pm (Clo23) at the age of 56 days. At each time point, small intestinal mucosa samples were collected from duodenum, jejunum, and ileum for detection of mRNA expression of the amino acid transporters and circadian gene Cry. The results showed that mRNA expression of most amino acid transporters in intestinal mucosa was higher at night and lower during the daytime. Expression of SLC1A2, SLC6A20, SLC7A1, and SLC6A14 in duodenal mucosa reached the peak at Clo3 and Clo7; the diurnal rhythm of expression of SLC1A2, SLC6A20, and SLC7A1 was similar to Cry1, while the diurnal rhythm of expression of SLC6A14 had a similar trend to Cry2. Expression of SLC16A10, SLC1A2, and SLC7A1 in jejunal mucosa reached the peak at Clo7, while SLC6A14 reached the peak at Clo3; the diurnal rhythm of expression of SLC1A2 showed a similarity with Cry1, while the diurnal rhythm of expression of SLC16A10, SLC7A1, and SLC6A14 was similar to Cry2. Expression of SLC6A14, SLC6A20, and SLC7A1 in ileal mucosa reached the peak at Clo3; the diurnal rhythm of expression of SLC6A20 has a similarity with Cry1, while the diurnal rhythm of expression of SLC7A1 and SLC6A14 was similar to Cry2. The results suggested that the mRNA expression of most genes encoding amino acid transporters exhibited diurnal rhythms in the intestinal mucosa of piglets, and SLC7A1, SLC6A14, and SLC1A2 have a similar rhythm with circadian clock genes Cry1 and 2, and they reached the peak at Clo3 and Clo7.  相似文献   

15.
Intestinal development during late embryogenesis and early post-hatch has a long-term influence on digestive and absorptive capacity in chickens. The objective of this research was to obtain a global view of intestinal solute carrier (SLC) gene family member expression from late embryogenesis until 2 weeks post-hatch with a focus on SLC genes involved in uptake of sugars and amino acids. Small intestine samples from male chicks were collected on embryonic days 18 (E18) and 20 (E20), day of hatch and days 1, 3, 7 and 14 post-hatch. The expression profiles of 162 SLC genes belonging to 41 SLC families were determined using Affymetrix chicken genome microarrays. The majority of SLC genes showed little or no difference in level of expression during E18–D14. A number of well-known intestinal transporters were upregulated between E18 and D14 including the amino acid transporters rBAT , y + LAT-2 and EAAT3 , the peptide transporter PepT1 and the sugar transporters SGLT1 , GLUT2 and GLUT5 . The amino acid transporters CAT-1 and CAT-2 were downregulated. In addition, several glucose and amino acid transporters that are novel to our understanding of nutrient absorption in the chicken intestine were discovered through the arrays ( SGLT6 , SNAT1 , SNAT2 and AST ). These results represent a comprehensive characterization of the expression profiles of the SLC family of genes at different stages of development in the chicken intestine and lay the ground work for future nutritional studies.  相似文献   

16.
The late-infantile-onset forms are the most genetically heterogeneous group among the autosomal recessively inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses (NCLs). The Turkish variant was initially considered to be a distinct genetic entity, with clinical presentation similar to that of other forms of late-infantile-onset NCL (LINCL), including age at onset from 2 to 7 years, epileptic seizures, psychomotor deterioration, myoclonus, loss of vision, and premature death. However, Turkish variant LINCL was recently found to be genetically heterogeneous, because mutations in two genes, CLN6 and CLN8, were identified to underlie the disease phenotype in a subset of patients. After a genomewide scan with single-nucleotide-polymorphism markers and homozygosity mapping in nine Turkish families and one Indian family, not linked to any of the known NCL loci, we mapped a novel variant LINCL locus to chromosome 4q28.1-q28.2 in five families. We identified six different mutations in the MFSD8 gene (previously denoted "MGC33302"), which encodes a novel polytopic 518-amino acid membrane protein that belongs to the major facilitator superfamily of transporter proteins. MFSD8 is expressed ubiquitously, with several alternatively spliced variants. Like the majority of the previously identified NCL proteins, MFSD8 localizes mainly to the lysosomal compartment. However, the function of MFSD8 remains to be elucidated. Analysis of the genome-scan data suggests the existence of at least three more genes in the remaining five families, further corroborating the great genetic heterogeneity of LINCLs.  相似文献   

17.
“Extra” domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIAFru and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane α-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.  相似文献   

18.
The Amino acid-Polyamine-Organocation (APC) superfamily is the main family of amino acid transporters found in all domains of life and one of the largest families of secondary transporters. Here, using a sensitive homology threading approach and modelling we show that the predicted structure of APC members is extremely similar to the crystal structures of several prokaryotic transporters belonging to evolutionary distinct protein families with different substrate specificities. All of these proteins, despite having no primary amino acid sequence similarity, share a similar structural core, consisting of two V-shaped domains of five transmembrane domains each, intertwined in an antiparallel topology. Based on this model, we reviewed available data on functional mutations in bacterial, fungal and mammalian APCs and obtained novel mutational data, which provide compelling evidence that the amino acid binding pocket is located in the vicinity of the unwound part of two broken helices, in a nearly identical position to the structures of similar transporters. Our analysis is fully supported by the evolutionary conservation and specific amino acid substitutions in the proposed substrate binding domains. Furthermore, it allows predictions concerning residues that might be crucial in determining the specificity profile of APC members. Finally, we show that two cytoplasmic loops constitute important functional elements in APCs. Our work along with different kinetic and specificity profiles of APC members in easily manipulated bacterial and fungal model systems could form a unique framework for combining genetic, in-silico and structural studies, for understanding the function of one of the most important transporter families.  相似文献   

19.
"Extra" domains in members of the families of secondary transport carrier and channel proteins provide secondary functions that expand, amplify or restrict the functional nature of these proteins. Domains in secondary carriers include TrkA and SPX domains in DASS family members, DedA domains in TRAP-T family members (both of the IT superfamily), Kazal-2 and PDZ domains in OAT family members (of the MF superfamily), USP, IIA(Fru) and TrkA domains in ABT family members (of the APC superfamily), ricin domains in OST family members, and TrkA domains in AAE family members. Some transporters contain highly hydrophilic domains consisting of multiple repeat units that can also be found in proteins of dissimilar function. Similarly, transmembrane alpha-helical channel-forming proteins contain unique, conserved, hydrophilic domains, most of which are not found in carriers. In some cases the functions of these domains are known. They may be ligand binding domains, phosphorylation domains, signal transduction domains, protein/protein interaction domains or complex carbohydrate-binding domains. These domains mediate regulation, subunit interactions, or subcellular targeting. Phylogenetic analyses show that while some of these domains are restricted to closely related proteins derived from specific organismal types, others are nearly ubiquitous within a particular family of transporters and occur in a tremendous diversity of organisms. The former probably became associated with the transporters late in the evolutionary process; the latter probably became associated with the carriers much earlier. These domains can be located at either end of the transporter or in a central region, depending on the domain and transporter family. These studies provide useful information about the evolution of extra domains in channels and secondary carriers and provide novel clues concerning function.  相似文献   

20.
Tremendous amount of primary sequence information has been made available from the genome sequencing projects, although a complete annotation and identification of all genes is still far from being complete. Here, we present the identification of two new human genes from the pharmacologically important family of transporter proteins, solute carriers family 6 (SLC6). These were named SLC6A17 and SLC6A18 by HUGO. The human repertoire of SLC6 proteins now consists of 19 functional members and four pseudogenes. We also identified the corresponding orthologues and additional genes from mouse and rat genomes. Detailed phylogenetic analysis of the entire family of SLC6 proteins in mammals shows that this family can be divided into four subgroups. We used Hidden Markov Models for these subgroups and identified in total 430 unique SLC6 proteins from 10 animal, one plant, two fungi, and 196 bacterial genomes. It is evident that SLC6 proteins are present in both animals and bacteria, and that three of the four subfamilies of mammalian SLC6 proteins are present in Caenorhabditis elegans, showing that these subfamilies are evolutionary very ancient. Moreover, we performed tissue localization studies on the entire family of SLC6 proteins on a panel of 15 rat tissues and further, the expression of three of the new genes was studied using quantitative real-time PCR showing expression in multiple central and peripheral tissues. This paper presents an overall overview of the gene repertoire of the SLC6 gene family and its expression profile in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号