首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of horseradish peroxidase administration into the wall of the sigmoid colon central part, localization, relative amount, body forms and size of the neurons, dealing with innervation of the given part of the colon have been determined. Labelled neurons are present in the colon wall, in ganglia of the caudal mesenteric artery nervous plexus, in the caudal and cranial mesenteric ganglia in the celiac plexus ganglia, in nodes and internodal branches of the lumbar part of the sympathetic trunk (the left one predominantly) and in the spinal ganglia from TXIII up to LVII. In the grey substance of the spinal cord labelled neurons are not revealed. The main part of the postganglionar sympathetic neurons, projecting their axons to the sigmoid colon, are situated in the caudal mesenteric ganglion. In the spinal ganglia the most part of the labelled neurons are to the left at the level of LII-LVI, to the right--at the level of LII-LV. The optimal time for revealing the greatest number of the labelled neurons are the 1st-3d days after administration of the enzyme. Capture of the lable takes place later in the neurons of those ganglia, which are situated more further from the place of peroxidase administration.  相似文献   

2.
Transneuronal tracing with pseudorabies virus (PRV) was used to identify sites in the central nervous system involved in the neural control of colon function. PRV-immunoreactive (IR) cells were primarily localized to the caudal lumbosacral (L6-S1) and caudal thoracic-rostral lumbar (T13-L1) spinal segments with the distribution varying according to survival time (72-96 h). In the lumbosacral spinal cord at all time points examined, significantly (PА.005) greater numbers of PRV-IR cells were present in the region of the sacral parasympathetic nucleus (SPN) of the S1 spinal segment compared to that of the L6 segment. These studies also revealed morphologically distinct cell types with a differential distribution (probably interneurons and preganglionic parasympathetic neurons) in the region of the SPN in the L6-S1 spinal segments following colon inoculation. PRV-labeled neurons were located at various levels of the neuraxis and at many sites had a distribution similar to that following injection of virus to other urogenital organs. However, some unique sites in the dorsal motor nucleus of the vagus, nucleus of the solitary tract, nucleus ambiguus and area postrema were also identified. To determine if labeling in these caudal medullary sites was mediated by spinal or vagal pathways, the colon was inoculated with PRV in animals with a complete spinal cord (T8) transection (5-7 days prior). Following spinal transection, PRV-infected cells were detected in the same caudal medullary regions; however, labeling in other regions (e.g., Barrington's nucleus) was eliminated or significantly reduced. These studies have yielded several novel observations concerning the central neural control of colonic function: (1) the preganglionic efferent and primary afferent innervation of the colon arises primarily from the S1 spinal segment; (2) the distribution of PRV-infected neurons in the central nervous system following colon inoculation was similar to that following PRV inoculation of other urogenital organs; (3) Barrington's nucleus, which has been identified previously as the pontine micturition center, may have a role in colonic function; and (4) PRV infection in Barrington's nucleus following colon inoculation is mediated by bulbospinal pathways whereas labeling in caudal medullary regions is mediated, at least in part, by vagal pathways.  相似文献   

3.
1. The caudal extent of the collateral arborizations of entering sensory fibres in rat spinal cord was investigated by two methods: bulk labelling of peripheral nerves by injection of horseradish peroxidase conjugated to cholera toxin (B-HRP) and by antidromic stimulation using small currents from microelectrodes in the spinal cord while recording from single units in peripheral nerve or dorsal root. 2. The results show that injection of B-HRP into the sural or sciatic nerve labelled sural afferents in the grey matter three to four segments caudal to their root entry and sciatic nerve fibres were located in S4, the most caudal segment examined, four to six segments caudal to their root entry. 3. Detailed mapping with microelectrode stimulation showed that the parent descending fibres from filaments dissected from the L1 dorsal root coursed more than 20 mm, seven to eight segments caudal to the entry point in the dorsal columns and sent branches into the grey matter. Single units from the sural nerve were also followed caudally into the S2 and S3 spinal cord segments and also issued collateral branches into the grey matter. 4. The present results suggest that there is close agreement in the caudal penetration of long-ranging afferents by using complementary anatomical and electrophysiological methods.  相似文献   

4.
Location and numbers of neurons associated with sympathetic innervation of the heart within the right stellate and accessory cervical ganglia, the spinal cord, and spinal ganglia were investigated using horseradish peroxidase retrograde axonal transport techniques in cats. The enzyme was applied to central sections of the anastomosis of the stellate ganglion with the vagus nerve, the inferior cardiac nerve, and the vagosympathetic trunk caudal to the anastomosis. Labeled neurons within the stellate ganglion were located close to the point of departure of the nerves and more thinly distributed in the accessory cervical ganglion. A group of labeled cells was found in the anastomosis itself. Preganglionic neurons associated with sympathetic innervation of the heat were detected at segmental levels T1–T5 in the spinal cord. Labeled neurons were diffusely located in the spinal ganglia, concentrated mainly at levels T2–T4.Medical Institute, Ministry of Public Health of the RSFSR, Yaroslavl'. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 106–111, January–February, 1989.  相似文献   

5.
The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an "inflammatory exudate solution" (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I-V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.  相似文献   

6.
Origin of adrenergic fibres of vagus is studied. They are shown to appear in the thoracic vagus through caudal anastomosis introduction. The observations indicated that axons of spinal neurons and neurons of the ganglion stellate passed through caudal anastomosis and entered a thoracic vagus nerve. Stimulation of the thoracic vagus in cats after atropine sulphate injection increases the heart rate.  相似文献   

7.
Retrograde cobalt labeling was performed by incubating the rootlets of cranial nerves IX, X and XI, or the central stumps of the same nerves, in a cobaltic lysine complex solution, and the distribution of efferent neurons sending their axons into these nerves was investigated in serial sections of the medulla and the cervical spinal cord in young rats. The following neuron groups were identified. The inferior salivatory nucleus lies in the dorsal part of the tegmentum at the rostral part of facial nucleus. It consists of a group of medium-sized and a group of small neurons. Their axons make a hair-pin loop at the midline and join the glossopharyngeal nerve. The dorsal motor nucleus of the vagus situates in the dorsomedial part of the tegmentum. Its rostral tip coincides with the first appearance of sensory fibres of the glossopharyngeal nerve, the caudal end extends into the pyramidal decussation. The constituting cells have globular or fusiform perikarya and they are the smallest known efferent neurons. The ambiguous nucleus is in the ventrolateral part of the tegmentum. The rostral tip lies dorsal to the facial nucleus, and the caudal tip extends to the level of the pyramidal decussation. The rostral one third of the ambiguous nucleus is composed of tightly-packed medium sized neurons, while larger neurons are arranged more diffusely in the caudal two thirds. The long dendrites are predominantly oriented in the dorsoventral direction. The dorsally-oriented axons take a ventral bend anywhere between the ambiguous nucleus and dorsal motor nucleus of the vagus. The motoneurons of the accessorius nerve are arranged in a medial, a lateral and a weak ventral cell column. The medial column begins at the caudal aspect of the pyramidal decussation and terminates in C2 spinal cord segment. The lateral and ventral columns begin in C2 segment and extend into C6 segment. The neurons have large polygonal perikarya and characteristic cross-shaped dendritic arborizations. The axons follow a dorsally-arched pathway between the ventral and dorsal horns. The accessorius motoneurons have no positional relation to any of the vagal efferent neurons. It is concluded that the topography and neuronal morphology of accessorius motoneurons do not warrant the designation of a bulbar accessorius nucleus and a bulbar accessorius nerve.  相似文献   

8.
Summary The caudal neurosecretory complex of poeciliids has previously been shown to be innervated by extranuclear and intrinsic serotonergic projections. In the present study, immunohistochemical techniques were used to characterize fibers originating from serotonin neurons intrinsic to the caudal spinal cord. Bipolar and multipolar neurons were oriented ventromedially, and contained numerous large granular vesicles. Three types of serotonergic fibers were distinguished based on their distribution and morphology. Intrinsic Type-A fibers branched into varicose segments near the ventrolateral surface of the spinal cord and contacted the basal lamina beneath the leptomeninges. Type-B fibers coursed longitudinally to enter the urophysis, where they diverged and terminated around fenestrated capillaries. Labelled vesicles in Type-A and Type-B terminals were the same size as those in labelled cells and in unlabelled neurosecretory terminals in the urophysis. Type-C small varicose fibers branched within the neuropil of the caudal neurosecretory complex. Serotonin may be secreted into the submeningeal cerebrospinal fluid, the urophysis, and the caudal vein by Type-A and Type-B fibers, whereas, Type-C fibers may be processes of serotonergic interneurons in the neuroendocrine nucleus. The possibility that urotensins I and II or arginine vasotocin were colocalized in the processes of the intrinsic serotonin neurons was investigated immunohistochemically. The negative results of these experiments suggest that serotonin-containing neurons may represent a neurochemically distinct subpopulation in the caudal neurosecretory complex.  相似文献   

9.
Using the horseradish peroxidase (HP) retrograde method for ascertaining connections of the celiac plexus of the white rat with various afferent centers, HP-marked neurocytes have been revealed in caudal nodes of the vagus nerves and in spinal nodes at the Th4-L2 level. Negative results have been obtained at investigation of the cervical spinal nodes and intramural nodes in the cat ileocecal part. Similar data are obtained, when connections of the celiac plexus with the same area of the cat gut are investigated. Therefore, the problem on interrelations of the celiac plexus with the proper afferent centers of the diaphragmatic+ nerve and the second type cells of Dogel in the cat intramural ganglia is still disputable.  相似文献   

10.
Central organization of the cardiac vagus has not been clarified. Retrograde changes produced in medulla oblongata neurons after section of vagal branches has favored the dorsal motor nucleus of the vagus (DMNX). Current information concerning the origin, course, and termination of vagal preganglionic fibers within cardiac ganglia is conflicting. The explicit purpose of this study was to determine if vagal fibers originated specifically within the DMNX proper. Fibers within the cardiac ganglia were labelled with 3H-leucine following injection into the DMNX. 12 adult albino rats were studied. DMNX were injected with 25 microCi 3H-leucine reconstituted to microliter. Animals were sacrificed by transcardial perfusion following a 4-day survival period. Serial cross-sections of the caudal pons, medulla oblongata, and thoracic viscera were processed for autoradiography. DMNX possessed a heavy incorporation of the radiochemical. Label was observed within the axons of the vagi. Cardiac ganglia contained labelled vagal fibers in close proximity to the postganglionic somata. Cardiac ganglia containing labelled preganglionic vagal axons were located in the cardiac plexuses and in the epicardium. Results show a labelled vagal preganglionic input to cardiac ganglia from the DMNX.  相似文献   

11.
By means of the retrograde transport of horseradish peroxidase (HP) method sensitive innervation of the rabbit concha auriculae skin has been studied. For the investigation the skin area 2 X 2 sm large has been chosen on the internal surface of the right concha auriculae 6 sm below the upper edge of the ear. The HP solution is injected in the skin areas 5-6 mm large with normal electrical permeability and with decreased electrical resistance to the constant electrical current. In the first case innervation is ensured only by ipsilateral sensitive neurons of the spinal nodes (SN) CIII. Small neurons make 75% of the total amount of the labelled cells. In the second case about 98% of the skin areas are innervated by the neurons of the SN CIII and about 2% by the neurons of the SN CII. Small and middle neurons make 60% and 38%, respectively. Single labelled cells are revealed in the SN CIV. The HP-positive neurons, innervating the skin areas with an increased electrical permeability nearly 3 times exceed the neurons, projecting on the skin areas with normal electrical permeability. The large labelled neurons make 2% in both cases. Localization of the HP-positive cells in the SN is diffuse, structural compositions of the neurons are not revealed. In the trigeminal node labelled neurons are not found.  相似文献   

12.
The purpose of the present investigation was to characterize and determine the number of NADPH-diaphorase positive neurons around the central canal in the rabbit spinal cord. These neurons are known to function as interneurons and are present in all spinal cord segments. They differ in shape of their bodies and in length and branching of their processes. The main differentiation was observed in their number, depending on the place of their localization. The highest number of these NADPH-diaphorase positive neurons was in sacral part (6 in average), the lowest one was noticeable in thoracic spinal cord (1-2 in average). It can be concluded that pericentral neurons of the rabbit spinal cord are capable of synthesizing nitric oxide and that they differ in number, depending on the place of their localization in each spinal cord segment.  相似文献   

13.
The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, often traversing the injury site. This result mimics the effect of a conditioning peripheral nerve lesion. We also demonstrate that sensory neurons exposed to cAMP in vivo, when subsequently cultured in vitro, show enhanced growth of neurites and an ability to overcome inhibition by CNS myelin. Thus, stimulating cAMP signaling increases the intrinsic growth capacity of injured sensory axons. This approach may be useful in promoting regeneration after spinal cord injury.  相似文献   

14.
Distribution of neurons, forming cardiac nerves of the cat stellate ganglion, has been investigated. The inferior cardiac nerve conducts inotropic influences to the heart. It is formed by the neurons localized in the caudal part of the ganglion. The caudal anastomosis conducts chronotropic influences to the heart. It is formed by the neurons localized in the inferior part of the ganglion and the ventral horn of the spinal nucleus and nucleus intercalatus. Axons of the preganglionic neurons pass through the ganglion and are not interrupted.  相似文献   

15.
The present study determined that a population "nonclassical" sympathetic neurons in cats spinal cord contains catecholamines. They are localized in the central, dorsomedial, and lateral regions of the ventral horn of T1-T5 segments of the spinal cord. Electrophysiological study indicated that axonal conduction velocity is 7.3 +/- 0.5 m/s (ranging from 3.6 to 17.2 m/s). Possible functional roles of catecholamine-containing neurons of spinal cord include involvement in sympathetic control of cardiac cycle duration.  相似文献   

16.
By the method of retrograde axonal transport of horseradish peroxidase (HP) structure and localization of sympathetic neurons sending axons to the cranial cervical ganglion (CCG) have been revealed ipsilaterally in the ventral horns and in 4 nuclei of the spinal cord: nucl ILp, nucl. ILf. nucl. IC, nucl. ICpe. Orientation of the neurons, their number, structure of the nuclei formed by them, degree of the CCG efferentation by the preganglionic fibres, which run from various nuclei, are different. In nucl. ILf two types of neurons have been revealed-triangle and spindle-shaped, they always orienting by their long axis in mediolateral direction. The greatest amount of HP-positive neurons are found in nucl. ILp. They form a well distinquished compact nucleus in the lateral horns. HP-labelled neurons in nucl. ILp are found at the level of segments T1-T8 with their maximal amount at the level of segments T1-T3. HP-positive neurons are detected in nucl. ILf beginning from the segment C8 up to the middle of T4, in nucl. IC-from the segment C8 up to T6, in nucl. ICpe-from the segment C8 up to T5, in the ventral horns-from the segment T1 up to T5. In rostocaudal direction from the segment C8 up to T8 the number of HP-positive neurons is decreasing, but the part of nucl. ILp neurons in the CCG efferentation, comparing to the neurons in other sympathetic structures of the spinal cord, is increasing.  相似文献   

17.
Transversal ++semi-sectioning of the spinal ganglion (SG) is a good model for studying the reaction of the ganglional sensory neurons to sectioning of their peripheral and central processes. At sectioning the peripheral and central processes of the SG neurons degeneration of the neurons and their death take place. The degenerative processes are more pronounced in the neurons with the peripheral processes sectioned, and the restorative ones-with the central processes sectioned. The dynamics of the posttraumatic changes in absolute number of the neurons, profile areas of the body fields and neuronal nuclei, amount of neurons with certain signs of axonal reactions in the SG demonstrate a maximally pronounced reaction on the 7th day and beginning of restorative processes on the 15th day. They are not completed by the 180th day.  相似文献   

18.
To assess the generality of our previous finding (Gao and Macagno, 1987) that segmental homologues play a role in the establishment of the pattern of axonal projections of the heart accessory HA neurons, we have extended our studies to two other identified leech neurons: the anterior pagoda (AP) neurons and the annulus erector (AE) motor neurons. Bilateral pairs of AP neurons are found in the first through the twentieth segmental ganglia (SG1 through SG20) of the leech ventral nerve cord. All AP neurons initially extend axonal projections to the contralateral periphery as well as longitudinal projections along the contralateral interganglionic connective nerves toward anterior and posterior neighboring ganglia. Although the peripheral projections are maintained by all AP neurons throughout the life of the animal, the longitudinal projections disappear in all but two segments: the AP neurons in SG1 maintain their anterior projections and extend them into the head ganglion, and those in SG20 maintain their posterior projections and extend them into SG21 and the tail ganglion. When single AP neurons are deleted anywhere along the nerve cord before processes begin to atrophy, however, the longitudinal projections are retained by their ipsilateral homologues in adjacent ganglia. The rescued processes appear to take over the projections of the deleted neurons. In cases where two or more AP neurons on the same side of the nerve cord are deleted from adjacent ganglia, a contralateral homologue sometimes extends projections to the periphery ipsilaterally or on both sides. We obtained similar results when we deleted single AE neurons from midbody ganglia. Thus, our experiments with three different identified neurons consistently show that the initial pattern of projections is the same in all ganglia, but that the existence of homologues in adjacent ganglia leads to the pruning of some of the initial projections. A consequence of this homologue-dependent process retraction is that neurons normally lacking neighboring homologues will have patterns of projections different from those neurons that do have such neighbors. Process loss by the HA, AP, and AE neurons may be the result either of competition for targets, inputs, or growth factors or of direct interactions among homologous cells.  相似文献   

19.
Köbbert  C.  Thanos  S. 《Brain Cell Biology》2000,29(4):271-283
The frequent use of the adult rat sciatic nerve as a model to study the neuronal responses to injury, nerve regeneration and in transplantation studies, requires a detailed knowledge of the projection pattern of motor neurons into this nerve. Thus, as a first goal we determined this topographical projection of motor neurons and labelled small contingents by applying the fluorescent dye DiI in localised incisions made in the dorsal, rostral, ventral or caudal quadrants of the nerve. As a second goal we analysed with immunohistochemical methods the response of microglial cells within the topographical area corresponding to the incision and within areas outside this location. Uptake of the dye occurred only within the area confined to the incision, thus allowing the identification of the corresponding motor neuron perikarya within the ventral horn, eight to ten days later. In serial transverse sections of the lumbosacral spinal cord the number of labelled cells, their position within the ventral horn, and their longitudinal extent have been determined. The data suggest that the gross projection of the lumbosacral motor neuron column at the mid-thigh level of the sciatic nerve is topographic. In accordance, microglial cells showed fast activation within the injured topographic area, and a less pronounced and delayed response within the non-injured areas of the ventral horn. The graded response of microglial cells suggests that these cells possess a potential of local activation by sensing whether neurons are axotomised or just irritated by axotomy of their neighbours. The topographic organisation proves to be useful in studies on local injuries to the sciatic nerve and when analysing retrograde responses within the lumbosacral spinal cord.  相似文献   

20.
The investigation is dedicated to study sources of the carotid reflexogenic zone innervation in 43 tortoises (Testudo horsfieldi and Emys orbicularis). In 7 tortoises fine preparation of the vessels and nerves of the cervical area after V. P. Vorob'ev has been performed. In 13 animals descending branch of the glossopharyngeal nerve has been resected. In 4--the caudal ganglion of this nerve and in 9 tortoises the caudal ganglion of the vagus nerve have been resected. In 10 tortoises adrenergic nervous plexuses are studied after Falck-Govyrin method, and cholinergic ones--after Karnovsky-Roots. As demonstrate anatomical investigations, to the carotid reflexogenic zone of the tortoises, situating in the area of the common carotid artery base, the branches of the glossopharyngeal and of the vagus nerve approach. The experiments with resection of these nervous conductors demonstrate that by the end of 3 days after the operation myelin nervous fibers of various thickness are at the stage of granular decay. Cholinergic and adrenergic nervous fibers and plexuses are revealed histochemically in the carotid zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号