首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N2, O2-di-butyryl guanosine 3′:5′ monophosphate (Bt2 cGMP), a known competitive and selective inhibitor of the effect of cholecystokinin on the pancreatic acinar cells invitro was tested for its effect on the guinea pig gallbladder invitro. Bt2 cGMP inhibited competitively the contractile effect of cholecystokinin octapeptide, and also inhibited the contraction induced by sulfated gastrin-17. Bt2 cGMP failed to inhibit the contraction induced by bombesin, acetylcholine or histamine. The 8-bromo derivative of cGMP and the dibutyryl derivative of cAMP did not affect contraction stimulated by cholecystokinin octapeptide. Since it is specific for gastrincholecystokinin peptides, and not restricted to the pancreas, Bt2 cGMP could be used to recognize the action of these peptides.  相似文献   

2.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels regulate the spontaneous firing activity and electrical excitability of many cardiac and neuronal cells. The modulation of HCN channel opening by the direct binding of cAMP underlies many physiological processes such as the autonomic regulation of the heart rate. Here we use a combination of X-ray crystallography and electrophysiology to study the allosteric mechanism for cAMP modulation of HCN channels. SpIH is an invertebrate HCN channel that is activated fully by cAMP, but only partially by cGMP. We exploited the partial agonist action of cGMP on SpIH to reveal the molecular mechanism for cGMP specificity of many cyclic nucleotide-regulated enzymes. Our results also elaborate a mechanism for the allosteric conformational change in the cyclic nucleotide-binding domain and a mechanism for partial agonist action. These mechanisms will likely extend to other cyclic nucleotide-regulated channels and enzymes as well.  相似文献   

3.
The present studies were performed in order to examine the possible role of cyclic GMP-stimulated phosphodiesterase (cGMP-PDE) activity in the inhibitory action of the inflammatory peptide bradykinin on cyclic AMP (cAMP) accumulation in D384 cells. Bradykinin decreased the forskolin-stimulated cAMP accumulation in the presence of the phosphodiesterase inhibitor rolipram, and caused a transient 50% rise in cellular cGMP in the presence of the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). Both basal and bradykinin-stimulated cGMP accumulation were about 8 times higher in the presence of IBMX than in the presence of rolipram. Sodium nitroprusside, which caused a 20-70-fold increase in cGMP levels reduced forskolin stimulated cAMP accumulation, whereas hydroxylamine, which maximally caused a 16-fold increase in cGMP, did not. 8-bromo-cGMP or dibutyryl cGMP had no effect on cAMP accumulation induced by forskolin. The inhibitory effect of nitroprusside was totally reversed by blocking the soluble guanylate cyclase activity by methylene blue treatment; however, the inhibitory action of bradykinin on cAMP accumulation was not changed by this treatment. Additionally, inhibition of nitric oxide synthesis, which is known to be regulated by Ca2+ and in turn stimulates cGMP production, by N omega-nitro-L-arginine (L-NAME) treatment did not alter the inhibitory effect of bradykinin on forskolin-induced cAMP accumulation. These results indicate that large increases in cGMP may regulate cAMP via cGMP-PDE whereas the small increase induced by bradykinin is insufficient and that cGMP is not involved in the inhibitory action of bradykinin on cAMP levels in D384 cells.  相似文献   

4.
Nerve growth factor (NGF) rapidly increases the cyclic GMP (cGMP) level about 2-3-fold and enhances the cGMP phosphodiesterase (PDE) activity about 2-fold in rat pheochromocytoma PC12 cells. No changes in the level of cyclic AMP (cAMP) and in the activity of cAMP PDE were found. GTP and a nonhydrolysable analog of GTP, GMP-PCP, at 100 microM, were able to mimic the effect of NGF on the cGMP PDE activity. These results suggest that the cGMP system may be one of the second messengers of NGF action in PC12 cells.  相似文献   

5.
The experimental data on the role of the cyclic nucleotides (cAMP, cGMP) in the mammalian integrating systems and their significance in the processes of adaptation and radiosensitivity change of animals are analysed. The changes in the system of cyclic nucleotides (CN) are reported for a number of morbid conditions at the subunit level. The CN system changes as a body response to the extreme action including ionizing radiation are revealed. A concept on a phase correlation between adrenergic and cholinergic system activity in development of adaptive reaction of a cell and a body on the whole during radiation or the action of some other factors is emphasized. The significance of cAMP/cGMP ratio calculation (coefficient K) is underlined for the analysis and prediction of the morbid state outcome.  相似文献   

6.
It is established that the effect of thymus-derived species is connected with the cyclic nucleotide system. The action of thymus-derived immunocorrectors (thymalin, thymagen, vilosen) on catabolic processes of cyclic nucleotides has been observed under conditions of anaphylaxy and sensibilization. They show that sensibilization of the animal is bound up with a decrease of the cAMP/cGMP ratio. Anaphylaxis induces levelling of the cAMP/cGMP ratio up to the reference level. So, activity of enzymes of cyclic nucleotide catabolism grows due to the influence of thymogen, thymalin and vilosen in lymphocytes of sensibilized guinea pigs and tends to an increase in lymphocytes of anaphylaxis-treated animals.  相似文献   

7.
The studies deal with the influence of secretin and various ecbolic secretagogues on tissue levels of cAMP and cGMP in vivo and in the isolated perfused canine pancreas. The mutual behaviour of cellular cAMP and cGMP is observed and compared with the time course of the respective secretory events. Synthetic secretin as well as CCK, acetylcholine or Caerulein likewise elevate tissue cAMP and cGMP simultaneously. There exists no difference in the magnitude of increase and in the time course of changes in tissue cyclic nucleotide levels between hydrokinetic and ecbolic stimulation. The rise in cAMP and cGMP coincides with the onset of the respective secretory events and reaches peak values contemporarily to the excretory maxima. The following decrease in tissue cyclic nucleotides approximatively parallels juice or enzyme secretion in the isolated perfused pancreas but differs widely in vivo. Under this condition cAMP and cGMP rapidly fall to basal levels during undiminished excretory function and show a second rise after cessation of the latter. Secretin and various ecbolic secretagogues do not increase tissue content of cyclic nucleotides in the same dose-dependent manner as can be observed with pancreatic secretion. The behaviour of cAMP and cGMP after addition of secretin and CCK or acetylcholine remains widely unchanged during calcium-free perfusion in spite of an extensive excretory inhibition. The corresponding rise in cellular cAMP and cGMP in the sequence of hydrokinetic as well as of ecbolic stimulation points to an analogous intracellular mediation of various secretagogues in different target cells of the exocrine canine pancreas.  相似文献   

8.
Concurrent activation of vasoactive intestinal peptide and alpha 1-adrenergic receptor resulted in greater than 20-fold increases in pineal cAMP and cGMP accumulation. We now find that an intoxicating level of ethanol (0.2%, 34 mM) inhibits greater than 50% the large increases in pineal cAMP and cGMP produced by concurrent treatment with vasoactive intestinal peptide and phenylephrine. The potency of the various alcohols tested was directly related to their chain length. This inhibition appears to be specific since a five-fold higher concentration of ethanol does not inhibit the stimulation of cAMP and cGMP accumulation produced by concurrent treatment with isoproterenol and phenylephrine. Accordingly, it seems that one mechanism of action of ethanol on neural function may be its ability to selectively inhibit ethanol-sensitive integrative mechanisms which regulate cyclic nucleotides.  相似文献   

9.
C J Hubbard 《Life sciences》1983,33(17):1695-1702
The temporal relationship of changes in cAMP and cGMP to oocyte maturation was examined in proestrous hamsters (day 4). The first series of experiments showed, in normal cycling hamsters, an increase in cAMP and a decrease in cGMP at 1400 h shortly after the rise in LH with oocyte maturation beginning at 1800 h. When a second group of animals was injected with phenobarbital at 1200 h to block the LH surge, no significant change occurred in either cyclic nucleotide and oocyte maturation was prevented. In the second series of experiments single injections of either saline, hCG (30 IU), LH (10 micrograms) or FSH (10 micrograms) were given each to a group of animals at 0900 h on day 4. Animals were killed at five time intervals between 15 min and 3 h following the injection. LH and hCG stimulated a simultaneous increase in cAMP and decline in cGMP. The injection of FSH, however, did not cause an increase in cAMP but still produced a sharp decline in cGMP. Oocyte maturation occurred at 3 h in those animals injected with gonadotropins. Animals injected with saline showed neither cyclic nucleotide changes nor oocyte maturation. When cAMP and cGMP levels were expressed as a ratio (cAMP/cGMP) a significant increase occurred in the normal cycling animals and in those injected at 0900 h with gonadotropins. Phenobarbital and saline injected control animals showed no significant increase in the cAMP/cGMP ratio and no oocyte maturation. The results of these experiments and previous studies by this investigator indicate that cGMP may play an important role in oocyte maturation in the hamster prior to the LH surge. Since, in the presence of gonadotropins, the cAMP/cGMP ratio increases prior to oocyte maturation, it may be that the cyclic nucleotide ratio is also of importance in this process. Previous work by Hubbard and Terranova (1) has shown that guanosine 3':5' cyclic monophosphate (cGMP), can inhibit spontaneous maturation of hamster oocytes in vitro. This inhibitory action was dose dependent and overcome by LH. The cGMP-mediated inhibition occurred only in cumulus-enclosed oocytes, while adenosine 3':5' cyclic monophosphate (cAMP) inhibited spontaneous maturation in both cumulus-enclosed and denuded oocytes. The results of this study suggested that cGMP may play a role in inhibiting oocyte maturation prior to the LH surge. LH, the initiator of oocyte maturation, has also been shown in the intact proestrous rat and hamster to cause a decrease in cGMP at the same time that cAMP is rising (2,3).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Cyclic nucleotides are known to be effluxed from cultured cells or isolated tissues. Two recently described members of the multidrug resistance protein family, MRP4 and MRP5, might be involved in this process, because they transport the 3',5'-cyclic nucleotides, cAMP and cGMP, into inside-out membrane vesicles. We have investigated cGMP and cAMP efflux from intact HEK293 cells overexpressing MRP4 or MRP5. The intracellular production of cGMP and cAMP was stimulated with the nitric oxide releasing compound sodium nitroprusside and the adenylate cyclase stimulator forskolin, respectively. MRP4- and MRP5-overexpressing cells effluxed more cGMP and cAMP than parental cells in an ATP-dependent manner. In contrast to a previous report we found no glutathione requirement for cyclic nucleotide transport. Transport increased proportionally with intracellular cyclic nucleotide concentrations over a calculated range of 20-600 microm, indicating low affinity transport. In addition to several classic inhibitors of organic anion transport, prostaglandins A(1) and E(1), the steroid progesterone and the anti-cancer drug estramustine all inhibited cyclic nucleotide efflux. The efflux mediated by MRP4 and MRP5 did not lead to a proportional decrease in the intracellular cGMP or cAMP levels but reduced cGMP by maximally 2-fold over the first hour. This was also the case when phosphodiesterase-mediated cyclic nucleotide hydrolysis was inhibited by 3-isobutyl-1-methylxanthine, conditions in which efflux was maximal. These data indicate that MRP4 and MRP5 are low affinity cyclic nucleotide transporters that may at best function as overflow pumps, decreasing steep increases in cGMP levels under conditions where cGMP synthesis is strongly induced and phosphodiesterase activity is limiting.  相似文献   

11.
This study was conducted to determine the possible correlations between cyclic nucleotides cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP), and haemoglobin (Hb) concentration in nucleated cell suspensions of rabbit bone marrow incubated with erythropoietin (Ep). The levels of cAMP and cGMP were measured following the addition of different Ep concentrations to the suspensions. The Hb concentration was also measured in suspensions treated with Ep, dibutyryl cAMP (db-cAMP) or dibutyryl cGMP (db-cGMP), respectively. The following results were obtained: (1) upon the addition of 1 IU ml-1 Ep, an increase of cAMP levels was related to an increase in Hb concentration; while a decrease of Hb concentration was related to an increase of cGMP levels obtained when 0.1 IU ml-1 Ep was present in the incubation mixture. (2) A mimetic effect on Hb concentration was obtained upon the addition of db-cAMP or db-cGMP to the suspensions. (3) A quantitative correlation was found between the cAMP/cGMP ratio and Hb levels in cellular suspensions. This rapport was reviewed with respect to the controls as a decrease in Hb concentration when the ratio is less than one and an increase in Hb concentration when the ratio is greater than one.  相似文献   

12.
The acute in vitro action of adrenocorticotropin (ACTH) and corticosterone alone and in combination were determined in the Cloudman S-91 melanoma grown in vivo. Hormone-treated melanoma dice (5-240 min) were analyzed for tyrosinase activity (EC 1.14.18.1), cyclic AMP (cAMP) and cyclic GMP (cGMP). ACTH elevated cAMP levels in the S-91 melanoma. However, these increases in cAMP were not accompanied by increased tyrosinase activity. Corticosterone depressed cAMP levels while stimulating tyrosinase activity. ACTH plus corticosterone produced an early cAMP peak followed by depression. ACTH plus corticosterone stimulated tyrosine activity coincident with the early cAMP peak followed by a drop in tyrosinase activity which was subsequently elevated. cGMP levels were not altered by any hormone treatment. The results indicate that cAMP is not the sole modulator of tyrosinase activity and suggest the interaction of ACTH, corticosterone and cAMP in the regulation of melanoma tyrosinase activity.  相似文献   

13.
The role of cyclic nucleotides in mediating hormonally responsive adenylate cyclase and cAMP-dependent protein kinase was examined in vivo and in vitro when pseudopregnant rats were injected with hCG. Intracellular ovarian levels of cAMP increased, as expected, but no change in cGMP concentrations was observed. However, both cGMP and cAMP activated ovarian CDPK holoenzyme in vitro but cGMP had a lower affinity. The subunits of hCG were without effect. Even though cGMP and cAMP dissociate partially purified ovarian CDPK holoenzyme in vitro, the receptor sites of the regulatory subunit of CDPK would appear to be relatively specific for cAMP. Moreover, cGMP probably does not mediate hCG action in vivo.  相似文献   

14.
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA.These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.  相似文献   

15.
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA. These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.  相似文献   

16.
Balb/c mouse spleen lymphocytes incubated from 0 to 30 min with the mitogen, lipopolysaccharide (LPS), were examined for alterations in concentration of cGMP and cAMP using radioimmunoassay. An optimal concentration of LPS, 10 μg/106 cells/ml, caused an increase in the cGMP concentration which reached a maximum of 53% above control values 10 min after the addition of LPS. cAMP concentration also increased, showing two peaks, the first after 5 min to 32% above control values and the second after 30 min to 52% above control values. Although these changes in cyclic nucleotide concentration are small in comparison with other studies, they demonstrate that consistent and statistically significant data are obtained following transformation by a mitogen at its optimal concentration rather than at a concentration that causes maximum cyclic nucleotide changes. Enzymatic mechanisms were also investigated in order to explain the changes in cyclic nucleotide concentration during Balb/c mouse splenocyte transformation that were reported earlier. In cells incubated with LPS, the specific activity of adenylate cyclase increased more than twofold within 10 min, while there was no change in guanylate cyclase activity. Furthermore, cyclic nucleotide phosphodiesterase activity for both cAMP and cGMP increased by more than 20% over control values. These results explain the observed increase in cAMP, but not cGMP. It was demonstrated that cAMP was capable of inhibiting cGMP degradation by cyclic nucleotide phosphodiesterase by as much as 70%. The same is true for the effect of cGMP on cAMP degradation. LPS tended to inhibit the latter with no effect on the former. The relative affect was shown to be dependent on the cGMP/cAMP ratio. Therefore, it is proposed that the elevation in cGMP concentration observed early in lymphocyte activation occurs as a consequence of the inhibition by each cyclic nucleotide on the hydrolysis of the other.  相似文献   

17.
Statistically significant data indicating selective interaction of noradenaline and cAMP as well as of acetylcholine and cGMP were obtained in experiments on the microionophoretic bringing of cyclic purine nucleotides and mediator substances acetylcholine and noradrenaline to the rabbit cortical neurons. Studies on the relationships between cAMP and cGMP at the single unit level suggest their multilevel functional interaction with other systems of intracellular regulators.  相似文献   

18.
Bladder outlet obstruction (BOO) is a common disorder that is associated with altered bladder structure and function. For example, it is well established that BOO results in hypertrophy and hyperplasia of the bladder smooth muscle as well as detrusor instability. Since prostaglandins (PGs) and cyclic nucleotides (cyclic AMP [cAMP] and cyclic GMP [cGMP]) mediate both smooth muscle tone and proliferation, it is reasonable to suggest that changes in their levels may be involved in the pathophysiology of BOO-associated bladder disorders. Hence, the objective of this study was to investigate cyclic AMP, cyclic GMP and prostaglandins in the bladder of a rabbit model of BOO. BOO was induced in adult male New Zealand White rabbits. After 3 weeks, urinary bladders were excised, weighed and cut into segments. They were then incubated with stimulators of PGs, cAMP and cGMP and the formation of PGs, cAMP and cGMP were measured using radioimmunoassays. There was a significant increase in the obstructed bladder weights (P=0.002). The formation of PGE2, PGI2, cAMP and cGMP was significantly diminished in the detrusor (P<0.05) and bladder neck (P<0.05) in the BOO bladders compared to age-matched controls. Since PGE2, PGI2, cAMP and cGMP are known to inhibit the proliferation of smooth muscle cells (SMCs), the decreased synthesis of these factors, in BOO, may play a role in bladder SMC hypertrophy/hyperplasia. Our study points to the possible use of drugs that modulate the NO-cGMP and/or PG-cAMP axes in BOO-associated bladder pathology.  相似文献   

19.
The kinetic and regulatory properties of cGMP-activated phosphodiesterase (PDE) from human brain were studied. In double reciprocal plots the enzyme activity is characterized by a linear dependence of cAMP and a nonlinear one for cGMP. Micromolar concentrations of cGMP accelerate cAMP hydrolysis (7-14-fold) with Ka for cGMP of 0.36 microM. Stimulation of cAMP hydrolysis is accompanied by a decrease of Km with no changes in Vmax. With a rise in the cGMP concentration above 5 microM PDE activation is changed by its inhibition. Both substrates act as competitive inhibitors towards each other. The Ki value for both cGMP and cAMP is 30 microM. After the increase in the cAMP (Bt)2 concentration the activation of 5 microM cAMP hydrolysis is accompanied by the enzyme inhibition. Both analogs competitively inhibit cGMP hydrolysis with Ki of 10 and 1500 microM for cGMP(Bt)2 and cAMP(Bt)2, respectively. The data obtained point to the existence of two binding sites for cyclic nucleotides, namely, a regulatory site which is highly specific for cGMP and a catalytic site responsible for the hydrolysis of the both substrates which displays no apparent specificity either for cAMP or for cGMP. The different affinity of natural and synthetic cyclic nucleotides for these sites is determined, to a large extent, by the amino groups in the 2nd and 6th positions of the purine ring.  相似文献   

20.
The regulatory domain of the cGMP-binding cGMP-specific 3':5'-cyclic nucleotide phosphodiesterase (PDE5) contains two homologous segments of amino acid sequence that encode allosteric cyclic nucleotide-binding sites, referred to as site a and site b, which are highly selective for cGMP over cAMP. The possibility that the state of protonation in these sites contributes to cyclic nucleotide selectivity was investigated. The binding of cGMP or cAMP was determined using saturation and competition kinetics at pH values between 5.2 and 9.5. The total cGMP binding by PDE5 was unchanged by variation in pH, but the relative affinity for cGMP versus cAMP progressively decreased as the pH was lowered. Using site-directed mutagenesis, a conserved residue, Asp-289, in site a of PDE5 has been identified as being important for cyclic nucleotide discrimination in this site. It is proposed that deprotonation of Asp-289 enhances the number and strength of bonds formed with cGMP, while concomitantly decreasing the interactions with cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号