首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA damage tolerance (DDT) in budding yeast requires Lys-63-linked polyubiquitination of the proliferating cell nuclear antigen. The ubiquitin-conjugating enzyme Ubc13 and the Ubc enzyme variant (Uev) methyl methanesulfonate2 (Mms2) are required for this process. Mms2 homologs have been found in all eukaryotic genomes examined; however, their roles in multicellular eukaryotes have not been elucidated. We report the isolation and characterization of four UEV1 genes from Arabidopsis thaliana. All four Uev1 proteins can form a stable complex with At Ubc13 or with Ubc13 from yeast or human and can promote Ubc13-mediated Lys-63 polyubiquitination. All four Uev1 proteins can replace yeast MMS2 DDT functions in vivo. Although these genes are ubiquitously expressed in most tissues, UEV1D appears to express at a much higher level in germinating seeds and in pollen. We obtained and characterized two uev1d null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Those that germinated grew slower, and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis.  相似文献   

2.
G Serino  T Tsuge  S Kwok  M Matsui  N Wei    X W Deng 《The Plant cell》1999,11(10):1967-1980
The pleiotropic constitutive photomorphogenic/deetiolated/fusca (cop/det/fus) mutants of Arabidopsis exhibit features of light-grown seedlings when grown in the dark. Cloning and biochemical analysis of COP9 have revealed that it is a component of a multiprotein complex, the COP9 signalosome (previously known as the COP9 complex). Here, we compare the immunoaffinity and the biochemical purification of the COP9 signalosome from cauliflower and confirm its eight-subunit composition. Molecular cloning of subunit 4 of the complex revealed that it is a proteasome-COP9 complex-eIF3 domain protein encoded by a gene that maps to chromosome 5, near the chromosomal location of the cop8 and fus4 mutations. Genetic complementation tests showed that the cop8 and fus4 mutations define the same locus, now designated as COP8. Molecular analysis of the subunit 4-encoding gene in both cop8 and fus4 mutants identified specific molecular lesions, and overexpression of the subunit 4 cDNA in a cop8 mutant background resulted in complete rescue of the mutant phenotype. Thus, we conclude that COP8 encodes subunit 4 of the COP9 signalosome. Examination of possible molecular interactions by using the yeast two-hybrid assay indicated that COP8 is capable of strong self-association as well as interaction with COP9, FUS6/COP11, FUS5, and Arabidopsis JAB1 homolog 1, the latter four proteins being previously defined subunits of the Arabidopsis COP9 signalosome. A comparative sequence analysis indicated that COP8 is highly conserved among multicellular eukaryotes and is also similar to a subunit of the 19S regulatory particle of the 26S proteasome.  相似文献   

3.
Under favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacted directly with RGL2, and in vivo this interaction was strongly enhanced by SUPPRESSOR OF PHYA-105 1. COP1 directly ubiquitinated RGL2 to promote its degradation. Moreover, GA stabilized COP1 with consequent RGL2 destabilization. By uncovering this COP1–RGL2 regulatory module, we reveal a mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.

A master regulator of photomorphogenesis positively regulates germination in Arabidopsis seeds by directly ubiquitinating and promoting the degradation of a key repressor of seed germination.  相似文献   

4.
Wild-type Arabidopsis seedlings are capable of following two developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. Screening of Arabidopsis mutants for constitutive photomorphogenic development in darkness resulted in the identification of three new loci designated COP8, COP10, and COP11. Detailed examination of the temporal morphological and cellular differentiation patterns of wild-type and mutant seedlings revealed that in darkness, seedlings homozygous for recessive mutations in COP8, COP10, and COP11 failed to suppress the photomorphogenic developmental pathway and were unable to initiate skotomorphogenesis. As a consequence, the mutant seedlings grown in the dark had short hypocotyls and open and expanded cotyledons, with characteristic photomorphogenic cellular differentiation patterns and elevated levels of light-inducible gene expression. In addition, plastids of dark-grown mutants were defective in etioplast differentiation. Similar to cop1 and cop9, and in contrast to det1 (deetiolated), these new mutants lacked dark-adaptive change of light-regulated gene expression and retained normal phytochrome control of seed germination. Epistatic analyses with the long hypocotyl hy1, hy2, hy3, hy4, and hy5 mutations suggested that these three loci, similar to COP1 and COP9, act downstream of both phytochromes and a blue light receptor, and probably HY5 as well. Further, cop8-1, cop10-1, and cop11-1 mutants accumulated higher levels of COP1, a feature similar to the cop9-1 mutant. These results suggested that COP8, COP10, and COP11, together with COP1, COP9, and DET1, function to suppress the photomorphogenic developmental program and to promote skotomorphogenesis in darkness. The identical phenotypes resulting from mutations in COP8, COP9, COP10, and COP11 imply that their encoded products function in close proximity, possibly with some of them as a complex, in the same signal transduction pathway.  相似文献   

5.
Stomatal development in Arabidopsis thaliana has been linked to photoreceptor-perceived light through several components of the photomorphogenic switch, whose lack of function is often seedling-lethal. CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) is an important component of this switch, its loss of function producing stomatal clusters. Exploiting the reduced lethality of the cop10-1 mutant we characterized the developmental basis of its stomatal phenotype. Constitutive, light-independent stomata overproduction accounts for half of cop10-1 stomatal abundance and appears very early in development. Clusters are responsible for the remaining stomata excess and build-up progressively at later stages. Serial impressions of living cotyledon epidermis allowed a dynamic, quantitative analysis of stomatal lineage types by reconstructing their division histories. We found that COP10 adjusts the initiation frequency and extension of stomatal lineages (entry and amplifying asymmetric divisions) and represses stomatal fate in lineage cells; COP10 also supervises the orientation of spacing divisions in satellite lineages, preventing the appearance of stomata in contact. Aberrant accumulation of the proliferating stomatal lineage cell marker TMMpro::TMM-GFP showed that the abundant cop10-1 stomatal lineages maintained extended and ectopic competence for stomatal fate. Expression of stomatal development master genes suggests that the mutant does not bypass major molecular actors in this process. cop10-1 first leaf produces trichomes and apparently normal pavement cells, but functionally and morphologically aberrant stomata; COP10 operates genetically in parallel to the stomatal repressor SDD1 and does not generally affect epidermal cell differentiation, but seems to operate on stomatal lineages where it controls specific cell-lineage and cell-signaling developmental mechanisms.  相似文献   

6.
N Wei  X W Deng 《The Plant cell》1992,4(12):1507-1518
We report here the identification and characterization of a new Arabidopsis light-regulatory locus, COP9, mutation that leads to a constitutive photomorphogenic phenotype. Dark-grown cop9 seedlings exhibit many morphological characteristics of light-grown seedlings, including short hypocotyls and open and enlarged cotyledons with cell-type and chloroplast differentiation. Furthermore, the cop9 mutation leads to high-level expression of light-inducible genes in the absence of light, probably by altering the promoter activities of these genes. These properties imply that the mutation in the COP9 locus uncouples the light/dark signals from morphogenesis and light-regulated gene expression. In addition, light-grown cop9 mutants are severely dwarfed and are unable to reach maturation and flowering. This adult-lethal phenotype indicates that the COP9 locus also plays a critical role for normal development of the light-grown plant. Similar to cop1 mutants, but not det1, the cop9 mutants show (1) no effect on the phytochrome control of seed germination and (2) deficiency in the dark-adaptive change of expression of light-regulated genes. Our results suggest that the cop9 and cop1 mutations result in the same range of phenotypes and therefore COP9 and COP1 loci may encode closely related components in the same regulatory pathway.  相似文献   

7.
Plants have evolved light signaling mechanisms to optimally adapt developmental patterns to the ambient light environments. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5) are two critical components in the light signaling pathway in Arabidopsis thaliana. COP1 acts as an E3 ubiquitin ligase that targets positive regulators, such as HY5, leading to their degradation in darkness. However, functional analysis of the COP1-HY5 module in maize (Zea mays) has not been reported. Here, we investigated the expression patterns and roles of the COP1 and HY5 orthologs, ZmCOP1 and ZmHY5, in regulating photomorphogenesis. These two genes have high amino acid identities with their Arabidopsis homolog and were both regulated by light. Subcellular localization assay showed that ZmCOP1 was distributed in the cytosol and ZmHY5 localized in the nucleus. Exogenous expression of ZmCOP1 rescued the physiological defects of the cop1-4 mutant, and expression of ZmHY5 complemented the long hypocotyl phenotype of the hy5-215 mutant in Arabidopsis. Yeast two-hybrid and fluorescence resonance energy transfer assays showed that ZmCOP1 interacted with ZmHY5. Our study gains insight into the conserved function and regulatory mechanism of the COP1-HY5 signaling pathway in maize and Arabidopsis.  相似文献   

8.
Light signals have profound effects on morphogenesis of hypocotyls and cotyledons of Arabidopsis seedlings, but the mechanisms by which light signals are transduced and integrated to control these processes are poorly understood. We report here the identification of a new class of constitutive photomorphogenic (cop) mutants, cop2, cop3, and cop4, in which dark-grown seedlings have open and enlarged cotyledons resembling those of light-grown wild-type seedlings. The epistatic relationships of these three mutations to previously characterized phytochrome-deficient mutations suggest that COP2, COP3, and COP4 may act downstream of phytochrome in the light regulatory pathway. Mutations in each of the three loci alleviate the normal inhibition of cell-type differentiation, cell enlargement, and lateral cell division observed in cotyledons of dark-grown wild-type seedlings, but do not affect plastid differentiation. The cop4 mutation also leads to high-level dark expression of nuclear, but not plastid-encoded, light-inducible genes. We further show that for the nuclear cab1 gene encoding a chlorophyll a/b binding protein of the photosynthetic light-harvesting complex, activation in dark-grown cop4 mutants is achieved by modulation of promoter activity. Interestingly, COP4 modulates cab1 promoter activity through a pathway distinct from that of COP1 and COP9. Furthermore, cop4 mutants are defective in both root and shoot gravitropic responses, indicating that the COP4 locus may be involved in both light-signaling and gravity-sensing processes.  相似文献   

9.
通过构建表达光信号系统关键基因CRY1、CRY2和COP1启动子与GUS融合基因的拟南芥转基因植株,并对转基因植株进行GUS组织化学染色的结果表明,CRY1、CRY2和COP1的表达模式不受光条件的调控,并且在各器官有广泛的表达。分别分析CRY1基因启动子在cop1突变体以及COP1基因启动子在cry1突变体遗传背景中表达模式的结果表明,CRY1和COP1在转录水平上不存在明显的相互调控关系。  相似文献   

10.
HFR1, a basic helix-loop-helix protein, is known to be required for a subset of phytochrome A (phyA)-dependent photoresponses. To investigate the role of HFR1 in light signalling, we have examined the genetic interaction between HFR1 and HY5, a positive regulator of light signalling, and COP1, a repressor of photomorphogenesis. Double mutant analysis suggests that HFR1 mediates phyA-dependent inhibition of hypocotyl elongation independently of HY5. HFR1 was shown to be necessary for a subset of cop1-triggered photomorphogenic phenotypes in the dark, including inhibition of hypocotyl elongation, gravitropic hypocotyl growth, and expression of the light-inducible genes CAB and RBCS. Phenotypic analysis of the triple mutant cop1hy5hfr1 indicated that both HFR1 and HY5 are required for cop1-mediated photomorphogenic seedling development in darkness, consistent with their additive roles in phyA-dependent signalling. Taken together, these results suggest that HFR1 might act downstream of COP1, in a separate pathway from HY5, to mediate photomorphogenesis in Arabidopsis.  相似文献   

11.
The COP9 signalosome is a conserved cellular regulator present in diverse organisms. To understand the structural and functional relationship of the COP9 signalosome with its subunits, we expressed in wild-type and mutant Arabidopsis backgrounds two orthologues of subunit 1, rice FUS6 (rFUS6) and human GPS1, and Arabidopsis subunit 8 (COP9). In Arabidopsis, rFUS6 can functionally replace Arabidopsis endogenous FUS6 to form the COP9 signalosome complex and rescue the null fus6-1 mutant phenotype. Moreover, light-grown rFUS6 over-expression seedlings displayed longer hypocotyls and reduced anthocyanin accumulation in comparison to wild-type seedlings, which is opposite to the fus6/cop11 mutant phenotype. The long-hypocotyl phenotype was also observed in transgenic seedlings over-expressing Arabidopsis COP9. This finding indicates that over-expression of a functional subunit 1 or subunit 8 of the COP9 signalosome confers a gain-of-function phenotype relative to the complex. Human GPS1, when expressed in the fus6-1 null mutant of Arabidopsis, can assemble into a chimeric COP9 signalosome at low efficiency, demonstrating the structural conservation of the complexes between human and Arabidopsis. This low-abundancy chimeric complex is insufficient to fully rescue the mutant but is able to attenuate the mutant severity.  相似文献   

12.
13.
S F Kwok  B Piekos  S Misera    X W Deng 《Plant physiology》1996,110(3):731-742
Two genetic screens, one for mutations resulting in photomorphogenic development in darkness and the other for mutants with fusca phenotype, have thus far identified six pleiotropic Arabidopsis COP/DET/FUS genes. Here, we characterized representative mutants that define four additional pleiotropic photomorphogenic loci and a null mutant allele of the previously defined DET1 locus. Dark-grown seedlings homozygous for these recessive mutations exhibit short hypocotyls and expanded cotyledons and are lethal before reaching reproductive development. Dark-grown mutant seedlings also display characteristic photomorphogenic cellular differentiation and elevated expression of light-inducible genes. In addition, analyses of plastids from dark-grown mutants reveal partial chloroplast differentiation and absence of etioplast development. Root vascular bundle cells of light-grown mutant seedlings develop chloroplasts, suggesting that these FUS gene products are important for suppression of chloroplast differentiation in light-grown roots. Double-mutant analyses indicate that these pleiotropic cop/det/fus mutations are epistatic to mutations in phytochromes, a blue-light photoreceptor, and a downstream regulatory component, HY5. Therefore, there is a complement of at least 10 essential and pleiotropic Arabidopsis genes that are necessary for repression of photomorphogenic development.  相似文献   

14.
The COP9 signalosome (CSN) was originally identified based on the constitutively photomorphogenic/de-etiolated/fusca (cop/det/fus) mutants from Arabidopsis thaliana. CSN is evolutionary conserved, and its subunit 5 (CSN5) mediates the deconjugation of NEDD8 from the cullin subunit of E3 ubiquitin ligases (deneddylation). Here, we report on Arabidopsis mutants deficient in CSN5 function. We show that these mutants are phenotypically indistinguishable from the previously described cop/det/fus mutants of other CSN subunits. However, we also show that these mutants retain the CSN complex (lacking CSN5), and this finding is in contrast with the previously described CSN subunit mutants, which lack the CSN complex. We therefore conclude that loss of CSN5 as part of CSN is sufficient to cause the cop/det/fus mutant phenotype. Furthermore, we show that mutants defective in CSN5 as well as mutants defective in CSN are unable to deneddylate the Arabidopsis cullins AtCUL1, AtCUL3A, and AtCUL4. Because these are representative cullin subunits of the three cullin-containing E3 families present in Arabidopsis, we postulate that the cop/det/fus mutant phenotype may be the result of the defects caused by impaired CSN5-dependent deneddylation of cullin-containing E3s.  相似文献   

15.
FAR-RED INSENSITIVE219 (FIN219) in Arabidopsis (Arabidopsis thaliana) is involved in phytochrome A-mediated far-red (FR) light signaling. Previous genetic studies revealed that FIN219 acts as an extragenic suppressor of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). However, the molecular mechanism underlying the suppression of COP1 remains unknown. Here, we used a transgenic approach to study the regulation of COP1 by FIN219. Transgenic seedlings containing ectopic expression of the FIN219 amino (N)-terminal domain in wild-type Columbia (named NCox for the expression of the N-terminal coiled-coil domain and NTox for the N-terminal 300-amino acid region) exhibited a dominant-negative long-hypocotyl phenotype under FR light, reflected as reduced photomorphogenic responses and altered levels of COP1 and ELONGATED HYPOCOTYL5 (HY5). Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays revealed that FIN219 could interact with the WD-40 domain of COP1 and with its N-terminal coiled-coil domain through its carboxyl-terminal domain. Further in vivo coimmunoprecipitation study confirms that FIN219 interacts with COP1 under continuous FR light. Studies of the double mutant fin219-2/cop1-6 indicated that HY5 stability requires FIN219 under darkness and FR light. Moreover, FIN219 levels positively regulated by phytochrome A can modulate the subcellular location of COP1 and are differentially regulated by various fluence rates of FR light. We conclude that the dominant-negative long-hypocotyl phenotype conferred by NCox and NTox in a wild-type background was caused by the misregulation of COP1 binding with the carboxyl terminus of FIN219. Our data provide a critical mechanism controlling the key repressor COP1 in response to FR light.  相似文献   

16.
The Arabidopsis COP1 protein functions as a developmental regulator, in part by repressing photomorphogenesis in darkness. Using complementation of a cop1 loss-of-function allele with transgenes expressing fusions of cop1 mutant proteins and beta-glucuronidase, it was confirmed that COP1 consists of two modules, an amino terminal module conferring a basal function during development and a carboxyl terminal module conferring repression of photomorphogenesis. The amino-terminal zinc-binding domain of COP1 was indispensable for COP1 function. In contrast, the debilitating effects of site-directed mutations in the single nuclear localization signal of COP1 were partially compensated by high-level transgene expression. The carboxyl-terminal module of COP1, though unable to substantially ameliorate a cop1 loss-of-function allele on its own, was sufficient for conferring a light-quality-dependent hyperetiolation phenotype in the presence of wild-type COP1. Moreover, partial COP1 activity could be reconstituted in vivo from two non-covalently linked, complementary polypeptides that represent the two functional modules of COP1. Evidence is presented for efficient association of the two sub-fragments of the split COP1 protein in Arabidopsis and in a yeast two-hybrid assay.  相似文献   

17.
18.
Using a beta-glucuronidase (GUS) reporter-COP1 fusion transgene, it was shown previously that Arabidopsis COP1 acts within the nucleus as a repressor of seedling photomorphogenic development and that high inactivation of COP1 was accompanied by a reduction of COP1 nuclear abundance (A.G. von Arnim, X.-W. Deng [1994] Cell 79: 1035-1045). Here we report that the GUS-COP1 fusion transgene can completely rescue the defect of cop1 mutations and thus is fully functional during seedling development. The kinetics of GUS-COP1 relocalization in a cop1 null mutant background during dark/light transitions imply that the regulation of the functional nuclear COP1 level plays a role in stably maintaining a committed seedling's developmental fate rather than in causing such a commitment. Analysis of GUS-COP1 cellular localization in mutant hypocotyls of all pleiotropic COP/DET/FUS loci revealed that nuclear localization of GUS-COP1 was diminished under both dark and light conditions in all mutants tested, whereas nuclear localization was not affected in the less pleiotropic cop4 mutant. Using both the brassinosteroid-deficient mutant det2 and brassinosteroid treatment of wild-type seedlings, we have demonstrated that brassinosteroid does not control the hypocotyl cell elongation through regulation nuclear localization of COP1. The growth regulator cytokinin, which also dramatically reduced hypocotyl cell elongation in the absence of light, did not prevent GUS-COP1 nuclear localization in dark-grown seedlings. Our results suggest that all of the previously characterized pleiotropic COP/DET/FUS loci are required for the proper nuclear localization of the COP1 protein in the dark, whereas the less pleiotropic COP/DET loci or plant regulators tested are likely to act either downstream of COP1 or by independent pathways.  相似文献   

19.
To elucidate the role of the COP1 gene in flowering, we analyzed flowering of cop1 mutant lines in darkness. When grown in the presence of 1% (w/v) sucrose, the cop1-6 mutant flowered in darkness, but cop1-1 and cop1-4 did not. However, cop1-1 and cop1-4 flowered in darkness when grown in the presence of 5% (w/v) sucrose. Therefore, the COP1 gene represses not only photomorphogenesis in seedlings but also flowering in darkness. Comparison of mRNAs levels of floral identity genes in cop1-6 and wild-type plants grown in darkness revealed increased mRNA levels of genes that act downstream of CO and reduced FLC mRNA level in cop1-6. Double mutants of cop1-6 and each of the late-flowering mutations cry2-1, gi-2, co-1, and ld-1 flowered in darkness. All of the double mutants except cry2-1 cop1-6 flowered later than cop1-6, demonstrating that cop1-6 is epistatic to cry2-1 for early flowering. The ld-1 cop1-6 double mutant flowered much earlier than the ld-1 mutant. The delay in flowering in the double mutants was not strongly influenced by the light conditions, whereas that of the gi-2 cop1-6 double mutant was reduced in darkness.  相似文献   

20.
R Mayer  D Raventos    N H Chua 《The Plant cell》1996,8(11):1951-1959
Genetic studies using Arabidopsis offer a promising approach to investigate the mechanisms of light signal transduction during seedling development. Several mutants, called det/cop, have been isolated based on their deetiolated/constitutive photomorphogenic phenotypes in the dark. This study examines the specificity of the det/cop mutations with respect to their effects on genes regulated by other signal transduction pathways. Steady state mRNA levels of a number of differently regulated gene sets were compared between mutants and the wild type. We found that det2, cop2, cop3, and cop4 mutants displayed a gene expression pattern similar to that of the wild type. By contrast, det1, cop1, and cop9 mutations exhibited pleiotropic effects. In addition to light-responsive genes, genes normally inducible by plant pathogens, hypoxia, and developmental programs were inappropriately expressed in these mutants. Our data provide evidence that DET1, COP1, and COP9 most likely act as negative regulators of several sets of genes, not just those involved in light-regulated seedling development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号