首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
巢湖春夏季节浮游植物的动态变化   总被引:1,自引:0,他引:1  
2009年3月至8月,利用原位围隔实验和野外调查,研究了巢湖春夏季节浮游植物的动态变化.结果显示:围隔中浮游植物密度和生物量的变动范围分别是(2.95~102.43)×105 cells·L-1和0.0-7.39 mg·L-1,优势种类为鱼腥藻属(Anabaena)、梅尼小环藻(Cyclotella meneghiniana)和圆筒锥囊藻(Dinobryon cylindricum),其最大生物量分别为0.82 mg·L-1、0.66mg·L-1和2.98 mg·L-1,均出现在3月或4月.在巢湖湖水中,春季(3~5月)浮游植物平均生物量为5.43mg·L-1,其中绿藻占47.59%、硅藻占40.81%、蓝藻占10.18%,优势种类为盘星藻属(Pediastrum)和梅尼小环藻;而夏季(6~7月)浮游植物平均生物量为7.89mg·L-1,其中蓝藻占58.7%、绿藻占2.77%、硅藻占11.4%,优势种类为微囊藻属(Microcystis).磷和枝角类滤食对巢湖春夏季节浮游植物的生物量和群落结构有重要影响.  相似文献   

2.
Increasing degradation of the water quality, caused by overuse and salinization, leads to considerable changes of the phytoplankton composition in Kenyan Rift Valley lakes. Exemplarily, the phytoplankton communities and biomasses of deteriorating freshwater Lake Naivasha and salinizing Lake Oloidien were studied between 2001 and 2005, accompanied by physico-chemical measurements (pH, total phosphorus and nitrogen, alkalinity, conductivity). Over the last three decades, the ecology of these two water basins has been subjected to dramatic changes, caused by excessive use of water and catchment area by man. In L. Naivasha a shift in the dominance of coccoid cyanobacteria towards dominance of Chlorophyceae (Botryococcus terribilis) was observed. Lake Oloidien exhibited a shift in the dominance of coccoid Chlorophyceae towards dominance of cyanobacteria (Arthrospira fusiformis, Anabaenopsis elenkinii). Phytoplankton findings and chemical data demonstrate that L. Naivasha has developed towards a eutrophic freshwater lake while L. Oloidien has progressed towards a hypereutrophic alkaline-saline lake. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. Padisak  相似文献   

3.
1. The effects of nitric acidification on phytoplankton were studied in a small, eperimentally manipulated, oligotrophic lake (L302N) in the Eperimental Lakes Area of Canada. The focus was altered after 9 years of acidification to investigate the possibility of using nutrient additions to stimulate recovery, followed by a controlled incremental recovery, in which the pH was increased to a predetermined target level. 2. Five years of additions of HNO3 to L302N reduced its pH from 6.5 to 6.1. Nitrate concentration increased because the algal community was severely P deficient. The phytoplankton community structure and productivity were not significantly affected by these additions. 3. The phytoplankton community was significantly affected when pH was subsequently decreased over three successive years from 6.1 to 5.1 by the addition of HCl. Dominance shifted from chrysophytes to a co-dominance of chlorophytes and dinoflagellates, which altered the size structure of the community. Species diversity significantly decreased, although phytoplankton productivity remained unchanged. 4. At pH 5.1 nitrate and sulphate additions were made, creating conditions like those in lakes in eastern North America, which receive high loadings of nitrogen from the atmosphere. The phytoplankton assemblage shifted to dominance by small coccoidal chlorophytes. However, biomass and productivity were unaffected. 5. Finally, phosphate, as phosphoric acid, was added, along with nitrate and sulphate, to the epilimnion, which stimulated internal alkalinity generation and productivity. It is concluded that CO2 concentrations and the form of N (nitrate vs. ammonia) affect algal composition but that P determines algal biomass and productivity. Chlorophytes were found to be good competitors for P when N and CO2 were high; it is epected that cyanobacteria would be more competitive for P in low CO2 systems. Conversely, dinoflagellates are most competitive in systems with low pH and high P, such as that which occurred in L302N. Although the P additions reduced N concentrations and created alkalinity, this is not a recommended remedial procedure in acidified lakes because it enhanced dinoflagellate abundance, which has been associated with fish kills. 6. When all additions ceased, the pH of L302N recovered from 5.1 to 5.8, chrysophytes and chlorophytes became more abundant and dinoflagellates decreased in abundance. Phytoplankton biomass decreased and species diversity increased. Phytoplankton productivity remained unchanged  相似文献   

4.
The influence of nutrient levels, fish density and charophytes on the phytoplankton ecology of a shallow Mediterranean lake was studied by means of an in situ mesocosm experiment. Different levels of nutrients and fish were added over the course of an eight‐week experiment, during which charophytes were removed towards the end. After submerged plants were removed, phytoplankton biomass increased significantly in all the mesocosms, with a reduction of algal diversity and species richness and dominance of cyanobacteria. Cyanobacteria recruited from the sediment played an important role in sustaining planktonic populations of the dominant species. Oscillatorial species (Pseudanabaena galeata, Planktolyngbya limnetica) dominated at higher nutrient levels (0.5–1 mg L–1 P and 5–10 mg L–1 N) and chroococcal cyanobacteria (Merismopedia tenuissima) at lower nutrient levels. Density of planktivorous fish had little effect on the algal recruitment from the sediment and phytoplankton biomass and diversity. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
巢湖蓝藻水华形成原因探索及"优势种光合假说"   总被引:12,自引:0,他引:12  
为探索蓝藻水华的形成原因,从2007以来对巢湖西区浮游藻类种类、优势种季节变化、初级生产力、水质参数及优势种的光合生理生态学特性作了观测。关于蓝藻水华形成过程中迅猛发展的原因,近80a已提出了10种假说,但对解释巢湖形成的蓝藻水华,尚显不足。本文基于我们对蓝藻水华的了解,提出了如下“优势种光合假说”:(1)蓝藻水华包含各种藻类,蓝藻水华发生不仅与藻细胞浓度有关,还与水体初级生产力直接有关。巢湖中这两者在夏季最大,在冬季最小。但无定量关系。(2)水华藻类中生长最快、细胞密度最大的是优势种,含有多个优势种时可能随季节更替。巢湖几乎整年发生蓝藻水华,已检测出4种优势种都是蓝藻,从早春起先是水华鱼腥藻,以后有绿色微囊藻、惠氏微囊藻和铜绿微囊藻。(3)各种环境因子都影响优势种生长,其中少数主导因子影响较大。在巢湖富营养条件下,光强、温度和pH值是主导因子。(4)主导因子对优势种光合活性的影响,可决定其能否处于优势。巢湖的温度和pH值变化可能促进了惠氏微囊藻取代绿色微囊藻,铜绿微囊藻取代惠氏微囊藻,而光强变化可能调节冬季时水华鱼腥藻取代了绿色微囊藻,春季时正好是相反的取代。  相似文献   

6.
M. Dickman  X. Hang 《Hydrobiologia》1995,306(2):131-146
Crawford Lake, a meromictic lake located near Toronto, Canada, was cored to determine if algal pigments preserved in its sediments would make it possible to infer past changes in lake productivity over the last five hundred years. From 1500 to 1910 A.D. the sediments display extremely high levels of oscillaxanthin and myxoxanthophyll while chlorophyll derivatives and total carotenoids were relatively low. As the lake became increasingly more eutrophic in the latter part of the twentieth century, this relationship reversed itself. Competition for light between the deep dwelling cyanobacteria in the algal mat on the lake's bottom (8–14 m) and phytoplankton in the overlying surface layers of the water column (5–7 m) was attributed to the observed reduction in oscillaxanthin and myxoxanthophyll as Crawford Lake eutrophied. Because the major cyanobacteria in Crawford Lake are benthic mat forming Lyngbya and Oscillatoria, and not phytoplankton, competition for light with the overlying phytoplankton is critical in determining the total quantity of oscillaxanthin and myxoxanthophyll preserved in the lake's profundal sediments. These findings have major implications for the use of cyanobacterial pigments as indicators of lake trophic status in lakes where benthic algal mats are present.  相似文献   

7.
The impact of submerged macrophytes or their extracts on planktonic algae was studied under experimental conditions. Live Ceratophyllum demersum L., its extract, and extracts of four other plant species induced modifications in the phytoplankton dominance structure. These modifications were: a decline in the number of Oscillatoria limnetica Lemm., which was the most numerous cyanobacterian species, and a decline in biomass and percentage contribution of all cyanobacteria to total algal biomass. This was accompanied by an increase in biomass and percentage contribution of green algae, especially Chlorella sp. and Chlamydomonas sp. Also, there was an increase in biomass and percentage contribution of nanoplankton (under 50 µm) to total phytoplankton biomass.The isolation of planktonic algae from direct influence of C. demersum by means of dialysis membranes caused an increase in number, biomass and percentage contribution of cyanobacteria. Release of organic compounds of over 3000 daltons by macrophytes apparently contributed to a decline of cyanobacteria by changing the phytoplankton dominance structure.  相似文献   

8.
Temponeras  M.  Kristiansen  J.  Moustaka-Gouni  M. 《Hydrobiologia》2000,424(1-3):109-122
Phytoplankton species composition, seasonal dynamics and spatial distribution in the shallow Lake Doïrani were studied during the growth season of 1996 along with key physical and chemical variables of the water. Weak thermal stratification developed in the lake during the warm period of 1996. The low N:P ratio suggests that nitrogen was the potential limiting nutrient of phytoplankton in the lake. In the phytoplankton of the lake, Chlorophyceae were the most species-rich group followed by Cyanophyceae. The monthly fluctuations of the total phytoplankton biomass presented high levels of summer algal biomass resembling that of other eutrophic lakes. Dinophyceae was the group most represented in the phytoplankton followed by Cyanophyceae. Diatomophyceae dominated in spring and autumn. Nanoplankton comprised around 90% of the total biomass in early spring and less than 10% in summer. The seasonal dynamics of phytoplankton generally followed the typical pattern outlined for other eutrophic lakes. R-species (small diatoms), dominant in the early phase of succession, were replaced by S-species (Microcystis, Anabaena, Ceratium) in summer. With cooling of the water in September, the biomass of diatoms (R-species) increased. The summer algal maxima consisted of a combination of H and M species associations (sensu Reynolds). Phytoplankton development in 1996 was subject to the combined effect of the thermal regime, the small depth of mixing and the increased sediment-water interactions in the lake, which caused changes in the underwater light conditions and nutrient concentrations.  相似文献   

9.
Phytoplankton dynamics in Lake Müggelsee, a eutrophic and polymictic lake in Berlin, and in the inflowing lowland River Spree have been comprehensively investigated during the last two decades. Zooplankton dynamics, nutrient supply, light climate, duration of ice cover and of summer stratification have also been regularly measured to help to explain phytoplankton development. The first period (1978–1990) was characterised by high nutrient loads and dominance of cyanobacteria from spring to autumn. Since then, loads of phosphorus and nitrogen have been lowered by 40–50%. Oscillatoria-like cyanobacteria (Limnothrix redekei, Planktothrix agardhii) were favoured under hypertrophic conditions in both the polymictic lake and the river, but they have disappeared nearly completely after nutrient reduction. Development of these species depended on meteorological conditions and nutrient supply in spring rather than on seasonal averages of nutrient concentrations. Diatoms have became dominant and chlorophytes have increased their share of the biomass since the nutrient load was reduced. Species com- position changed even within the algal groups. Retention time of water and duration of thermal stratification of the water column modified phytoplankton structure. Mobile algae like Microcystisor Ceratium occurred in the lake during stratification periods. Otherwise, species composition in the shallow, polymictic lake was very similar to that in the inflowing lowland river. Species with high starting biomass, fed by high riverine import, resting stages or perennation were selected in this flushed system.  相似文献   

10.
1. Size-fractionated phytoplankton biomass was examined in relation to the hydrodynamics of tropical Lake Alchichica from 1999 to 2002.
2. Alchichica is a warm monomictic lake, in which mixing takes place from late December to early March. The lake is oligotrophic (mean total chlorophyll- a concentration 4.2 ± 4.2  μ g L−1) and its phytoplankton biomass is dominated (72.3 ± 16.4%) by large individuals (>2  μ m). The degree of dominance of the large size class (nano- and microplankton) over the small size class (picoplankton) throughout the year is mainly determined by the availability of silicate and the Si/N ratio in the hypolimnion prior to the mixing period.
3. This is the first record of an oligotrophic tropical lake dominated by large size fractions of phytoplankton. Because of this dominance, the fate of most primary productivity is rapid sedimentation to the bottom followed by decomposition that promotes an anoxic hypolimnion.
4. Our findings in tropical Lake Alchichica challenge the idea that oligotrophic waters are dominated by small phytoplankton, as has been well established for the oligotrophic ocean and temperate lakes.  相似文献   

11.
The phytoplankton community in Lake Khurpatal (Kumaun Himalya), India, was analyzed in relation to physico-chemical variables. Phytoplankton biomass ranged from 2.7 to 20.0 g m−3 in the euphotic zone of the lake. Dinoflagellates monopolized the algal community with a mean annual contribution of 94.5 % to the total phytoplankton biomass. The community coefficient used to quantify the seasonal changes in algal population reflected the fact that successional episodes were not very significant, the percentage similarity among the consecutive algal samples ranging from 47.8 to 89.9 %. The phytoplankton community was characterized by low species richness, low equitability and species diversity. Various ecological characteristics of the community are discussed and the phytoplankton biomass is also compared with that of some tropical and temperate lakes.  相似文献   

12.
13.
The patterns of spatial and temporal shifts in bloom‐forming cyanobacteria and the driving factors for these patterns were determined by analyzing the distribution of these cyanobacteria in Lake Chaohu using data from satellite images and field samples collected during 2012 and 2013. The cyanobacterial blooms primarily occupied the western region of Lake Chaohu, and the direction and speed of the prevailing wind determined the spatial distribution of these blooms. The cyanobacteria in Lake Chaohu were dominated by species of Microcystis and Anabaena. Microcystis reached its peak in June, and Anabaena had peaks in May and November, with an overall biomass that was higher than that of Microcystis. Microcystis generally occupied the western region of the lake in summer, whereas Anabaena dominated in other regions and seasons. Temperature may be responsible for these seasonal shifts. However, total phosphorus (TP), pH, temperature, turbidity and nitrate/nitrite nitrogen determined the coexistence of the two genera in different regions in summer. TP was correlated with Microcystis dominance, and pH and light availability were correlated with Anabaena dominance. Our results contribute to the understanding of shifts in bloom‐forming cyanobacteria and are important for the control of cyanobacterial blooms.  相似文献   

14.
This study looks at two facets of dominant phytoplankton classes during phytoplankton succession. A detailed assessment of this issue is of special interest with regard to realized niches from a theoretical point of view but also for lake management as practical application.A realized niche mirrors the functional adaptability of an organism in a lake-specific constellation of environmental parameters. Therefore, the characterization of realized niches could be a key factor for management of problematic waters. Different strategies exist to control eutrophication and the risk of blooms by harmful algae. During the last decades, many restoration measures were initiated to manage eutrophicated inland lakes. In the past, it has become evident several times that restoration strategies do not necessarily lead to a reduction of biomass of undesirable cyanobacteria but can even promote their development.Due to this uncertainty of success and the high costs for remediation strategies, new prediction tools are required – ideally, based on routine monitoring data. Therefore, we developed a new method to extract potential optimal growth conditions (POGC) as indicators of realized niches for different phytoplankton taxa from existing data to improve existing strategies used in lake remediation and restoration.The analysis presented in this work is based on dominance pattern of different phytoplankton groups relative to environmental variables. Interpretation of these dominance patterns as indicators of POGC showed distinct pattern for several phytoplankton classes for all investigated objects. We identified low nitrogen and phosphate concentrations as favorable condition for cyanobacteria in Lake Auensee and Lake Feldberger Haussee. The reservoir Bleilochtalsperre showed a high N/P-concentration and cyanobacteria dominance was generally very low.  相似文献   

15.
1. Lake 302S in the Experimental Lakes Area of Canada was acidified from pH 6.7 (1981) to 5.1 (1986). The pH was further reduced to 4.5 in 1987 and held at that level until 1991. From 1992 to 1995, the pH was allowed to increase to a target value of 5.8.
2. The response of the phytoplankton community to decreasing pH from 6.0 to 5.1 was similar to that observed in another experimentally acidified lake (223) and in other atmospherically acidified lakes. Acidification affected species diversity of both the phytoplankton and epilithon. Phytoplankton diversity was positively correlated with pH. Epilithic algal diversity was more variable and did not correlate with pH.
3. Phytoplankton biomass was enhanced by acidification as the assemblage shifted from a dominance of chrysophytes to large dinoflagellates ( Gymnodinium sp. and Peridinium inconspicuum ). Epilithon biomass was unaffected, but dominance shifted from filamentous cyanophytes ( Lyngbya ) to acidophilic diatoms ( Tabellaria quadriseptata and Anomoeonis brachysira ).
4. The only taxon to be similarly affected in both the phytoplankton and epilithon was the cyanobacteria, being significantly reduced below pH 5.1. During early recovery (pH 5.5–5.8), cyanobacteria increased and species present prior to acidification recolonized both habitats.
5. In the early stages of recovery, planktonic and benthic assemblages remained more similar to acidified than natural assemblages, but more profound change began at pH > 5.5.  相似文献   

16.
We demonstrate a major ecological change in a large lake ecosystem in response to a series of extreme weather events. Phytoplankton community dynamics in subtropical Lake Okeechobee are described from 2000 through early 2008 with emphasis on inter-relationships among phytoplankton populations and associated environmental variables in this large, shallow eutrophic lake. The lake experienced the physical effects of three hurricanes in 2004–2005, which caused massive sediment resuspension, near total elimination of submerged aquatic vegetation, elevated biologically available nutrients and total suspended solids, and lower water transparency. Patterns of long-term co-dominance by nitrogen (N)-fixing cyanobacteria and meroplanktonic diatoms abruptly changed to dominance by only meroplanktonic diatoms. The planktonic cyanobacteria genera Anabaena and Planktolyngbya both decreased approximately an order of magnitude in the post-hurricane period despite large surpluses of bioavailable nutrients. Meroplanktonic diatoms (mostly Aulacoseira spp.) declined approximately 20%, perhaps because of superior competitive ability for light in a polymictic, turbid water column. Canonical Correspondence Analysis (CCA) suggested that reduction in planktonic cyanobacteria after compression of the photic zone and the persistence of meroplanktonic diatoms were related to light utilization traits for the key algal taxa and indicated that pre-existing light limitation and crustacean grazing pressure were intensified in the post-hurricane period.  相似文献   

17.
Zohary  T.  Fishbein  T.  Kaplan  B.  Pollingher  U. 《Wetlands Ecology and Management》1998,6(2-3):133-142
The dynamics of the algal populations of Lake Agmon, a newly created shallow lake in the Hula Valley, Israel, were monitored following its filling in April 1994 through 1996. Additional limited field observations and measurements were taken throughout 1997. Following an initial establishment period, the dynamics of the algal populations showed a repetitive annual pattern comprised of three phases: I. a clear water phase in January–February, with low phytoplankton biomass and no metaphyton; II. a metaphyton dominance phase during March–June when mats of filamentous chlorophytes covered most of the lake's sediments while phytoplankton biomass remained low; and III. an intense phytoplankton bloom phase from June till December. The shifts from phase I to II and from phase II to III were gradual, resulting from interplay between phosphorus availability, the underwater light climate, temperature effects and zooplankton grazing pressure. The shift from phase III back to phase I was abrupt, due to winter flushing of Lake Agmon. The summer phytoplankton blooms intensified from 1994 to 1996 and shifted from chlorophyte dominance in 1994 and 1995 to cyanobacteria-dominance in 1996 and 1997. These observations, jointly with the nutrient chemistry of Lake Agmon, suggest intense eutrophication. Criteria based on phytoplankton taxonomy also indicate that Lake Agmon is eutrophic to hypertrophic. Due to the typical unstable nature of hypertrophic systems, careful management is essential to maintain the delicate ecological balance needed to ensure that the lake will fulfill its intended role as a center for eco-tourism.  相似文献   

18.
太湖梅梁湾水华蓝藻复苏过程的研究   总被引:17,自引:0,他引:17  
采用在底泥表面设置藻类细胞捕捉器的方法,测定其中的色素含量变化,并与水柱和底泥中的色素含量变化相比较.结果表明,藻类复苏与底泥环境中的温度、光照、溶解氧、氧化还原电位均有密切关系,叶绿素a、b和藻蓝素所表征的总藻类、绿藻以及蓝藻的上浮率分别为59.84%、76.83%和466.98%,3种藻的上浮量分别占相应浮游藻类最大生物量的7.18%、3.71%和9.33%.蓝藻复苏对太湖水华的形成具有很重要的意义.  相似文献   

19.
Biomanipulation development in Norway   总被引:2,自引:2,他引:0  
Since 1974 several studies have been carried out in Norway to investigate the interactions between planktivorous fish, zooplankton, phytoplankton and water chemistry. Since 1978 a long-term national research program has been conducted by the Norwegian Council for Scientific and Industrial Research (NTNF). In this program several whole lake manipulations of the fish stocks have been performed to test hypotheses about trophic interactions. It was predicted that manipulations of planktivorous fish populations, might also improve water quality in lakes undergoing eutrophication. Two examples are given to illustrate the achieved results. I: Whole lake fertilization experiment (1974–1978) carried out by Langeland and Reinertsen. The results revealed the importance of top-down effects in the lake ecosystem. When cladocerans dominated, the zooplankton community was able to maintain a more or less constant phytoplankton biomass and a rather low phytoplankton production even when nutrient levels were increased. During years with rotifer dominance, algal biomass and productivity increased, despite the low amounts of added nutrients. II: Experiment performed by Reinertsen, Jensen, Koksvik, Langeland and Olsen in the eutrophic Lake Haugatjern, total elimination of the fish populations by rotenone in late 1980, resulted in a 4-fold decrease in the algal biomass. The species composition changed from the dominance of large-sizedAnabaena flos-aquae andStaurastrum luetkemuelleri to smaller, fastgrowing species and gelatinous green algae. The results are discussed in relation to management of inland waters by combined techniques of biomanipulation and reduced external nutrient supply which increase food-chain efficiency.  相似文献   

20.
太湖浮游植物优势种长期演化与富营养化进程的关系   总被引:12,自引:0,他引:12  
利用1991年至2002年每月一次的监测资料,系统分析了浮游植物优势种和生物量的周年变化情况。同时,总氮、总磷和浮游植物叶绿素a含量等相关资料也被用于解释太湖富营养化演化与浮游植物的关系。结果显示,太湖总氮、总磷、叶绿素a和生物量均呈自梅梁湾底至湖心的逐步递减趋势。在20世纪80年代末太湖刚开始富营养化时,浮游植物优势种群从硅藻转变为蓝藻。之后,浮游植物优势种群一直是蓝藻,但各年的浮游植物总生物量有变化。总氮、总磷、叶绿素a和生物量的年均值持续增长至1996年,其后有逐步下降的趋势,究其原因可能和当地政府在太湖流域的控制排污行动有关。微囊藻在太湖的占优是太湖富营养化的标志之一。研究结果说明浮游植物在大型浅水湖泊中可以作为反映富营养化进程的生态指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号