共查询到20条相似文献,搜索用时 0 毫秒
1.
阐明植物雄配子体与雌配子体互作的分子机理一直是植物有性生殖研究的前沿和热点。但限于研究难度较大, 很多重要科学问题仍有待回答。关于花粉管如何感知雌配子体信号从而定向生长进入胚囊以投送精细胞就是悬疑多年的问题之一。最近, 中国科学家在解析雄配子体感知雌配子体引导信号的分子机制方面取得了突破性进展。 相似文献
2.
Xiao‐Ying Dou Ke‐Zhen Yang Zhao‐Xia Ma Li‐Qun Chen Xue‐Qin Zhang Jin‐Rong Bai De Ye 《植物学报(英文版)》2016,58(7):679-692
In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen‐rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18‐GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18‐homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis. 相似文献
3.
4.
阿拉伯半乳糖蛋白在被子植物有性生殖中的作用 总被引:3,自引:0,他引:3
阿拉伯半乳糖蛋白(arabinogalactan-proteins,AGPs)是一类主要分布在细胞表面和胞外基质中的糖蛋白.它们在植物的雄性器官(花粉、花粉管、精细胞)、雌性器官(柱头、花柱、子房)和胚胎(合子胚和体细胞胚)等组织和细胞中均有大量的表达.大量研究表明AGPs在被子植物有性生殖过程中起着非常重要的作用,既可能参与花粉管粘附、营养、传导或提供信号的作用,也可能参与受精过程中配子识别和受精后胚胎的发育与分化等过程.该文就其分子结构、特性以及在植物有性生殖过程中各种器官和组织内的表达和功能研究进展做了较为全面的概述. 相似文献
5.
6.
双受精是被子植物特有的生殖方式,精细胞只有通过花粉管穿过花柱才能到达子房、胚珠受精。花粉管在母本组织中的生长和引导包括孢子体控制(sporophytic control)和配子体控制(gametophytic control)两个连续的过程,现已克隆出不同阶段花粉管生长和引导的基因,通过分析其表达调控揭示出花粉管生长和引导的分子机制。该文就近年来国内外有关花粉管生长和极性引导的调控机制研究进展进行综述,并对禾本科(Poaceae)和十字花科(Brassicaceae)植物花粉管引导的异同点进行了比较分析。 相似文献
7.
M. A. Breygina N. P. Matveeva I. P. Ermakov 《Russian Journal of Developmental Biology》2009,40(3):157-164
The involvement of Cl? in cytoplasm polarization in the pollen tube and membrane potential control during pollen germination in vitro was studied by fluorescence techniques in Nicotiana tabacum. Cl? release from cells was blocked by the anion channel inhibitor nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or by the addition of Cl? to the incubation medium. The concentrations of the inhibitor (40 μM) and extracellular Cl? completely inhibiting pollen germination (200 mM) and pollen tube growth (100 mM) were used. The release of anions from the pollen grain has been revealed in the first minutes of hydration also in the presence of 200 mM Cl?. The inhibitor blocked this process completely, which points to the significance of the NPPB-sensitive anion channels in the transmembrane Cl? transport at the early activation stage. The pollen tube membrane was hyperpolarized in the presence of 100 mM Cl?; however, exogenous Cl? had no effect on the compartmentalization and organelle movement in the tube. The inhibitor depolarized the plasma membrane in the pollen grain and tube and affected the polar organization of the cytoplasm and organelle movement. Thus, activity of NPPB-sensitive chloride channels was required to regulate the potential on the plasma membrane and to maintain the functional compartmentalization of the cytoplasm, which provides for the polar growth. 相似文献
8.
Ca2+、pH在花粉及萌发花粉管生长中的作用研究进展 总被引:11,自引:0,他引:11
花粉正常萌发并生长是精细胞顺利到达胚囊并实现受精作用的前提,因而是高等植物有性生殖的一个关键环节。花粉管生长涉及一系列过程,而花粉(或花粉管)内外的Ca^2 和pH的变化与花粉萌发、花粉管生长有着密切的关系。比较详细地论述了Ca^2 和pH在花粉萌发、花粉管生长过程中的分布特点、生理功能及分子机制。 相似文献
9.
Yang KZ Xia C Liu XL Dou XY Wang W Chen LQ Zhang XQ Xie LF He L Ma X Ye D 《The Plant journal : for cell and molecular biology》2009,58(5):870-882
In most flowering plant species, pollination and fertilization occur during the hot summer, so plants must have evolved a mechanism that ensures normal growth of their pollen tubes at high temperatures. Despite its importance to plant reproduction, little is known about the molecular basis of thermotolerance in pollen tubes. Here we report the identification and characterization of a novel Arabidopsis gene, THERMOSENSITIVE MALE STERILE 1 ( TMS1 ), which plays an important role in thermotolerance of pollen tubes. TMS1 encodes a Hsp40-homologous protein with a DnaJ domain and an a_ERdj5_C domain found in protein disulfide isomerases (PDI). Purified TMS1 expressed in Escherichia coli (BL21 DE3) had the reductive activity of PDI. TMS1 was expressed in pollen grains, pollen tubes and other vegetative tissues, including leaves, stems and roots. Heat shock treatment at 37°C increased its expression levels in growing pollen tubes as well as in vegetative tissues. A knockout mutation in TMS1 grown at 30°C had greatly retarded pollen tube growth in the transmitting tract, resulting in a significant reduction in male fertility. Our study suggests that TMS1 is required for thermotolerance of pollen tubes in Arabidopsis, possibly by functioning as a co-molecular chaperone. 相似文献
10.
从广义上讲,被子植物的受精过程是指花粉粒落到柱头上萌发形成花粉管,花粉管穿过柱头沿着引导组织生长进入子房内,最终在胚囊中实现精细胞与卵细胞以及中央细胞分别融合从而起始胚胎和胚乳的发育.被子植物的精细胞由于不具有鞭毛而无法自由移动,因此在受精过程中需要借助于花粉管来将精细胞运送到胚囊中.花粉管通过与雌性的孢子体组织之间的相互作用和识别将精细胞准确地运送到胚珠附近,而最终将精细胞准确地运送到胚囊内的过程则是受到了雌配子体细胞的控制.可以说,受精的成功实现有赖于雌性和雄性细胞之间的持续的识别和相互作用,这种互作具有多样性和阶段特异性.本文将主要综述被子植物受精过程中花粉粒以及花粉管与多种雌性孢子体组织以及雌配子体之间的信号互作研究. 相似文献
11.
Ecologists and evolutionary biologists have been interested in the functional biology of pollen since the discovery in the 1800s that pollen grains encompass tiny plants (male gametophytes) that develop and produce sperm cells. After the discovery of double fertilization in flowering plants, botanists in the early 1900s were quick to explore the effects of temperature and maternal nutrients on pollen performance, while evolutionary biologists began studying the nature of haploid selection and pollen competition. A series of technical and theoretic developments have subsequently, but usually separately, expanded our knowledge of the nature of pollen performance and how it evolves. Today, there is a tremendous diversity of interests that touch on pollen performance, ranging from the ecological setting on the stigma, structural and physiological aspects of pollen germination and tube growth, the form of pollen competition and its role in sexual selection in plants, virus transmission, mating system evolution, and inbreeding depression. Given the explosion of technical knowledge of pollen cell biology, computer modeling, and new methods to deal with diversity in a phylogenetic context, we are now more than ever poised for a new era of research that includes complex functional traits that limit or enhance the evolution of these deceptively simple organisms. 相似文献
12.
tRNA片段(tRF)是tRNA通过非随机剪切产生的RNA片段, 其产生和功能机制尚不明确; 而在水稻(Oryza sativa)雄配子体发育过程中, 人们对tRNA更是知之甚少。通过高通量测序, 在水稻雄配子体发育过程中发现了长度范围较大的tRFs; 进一步采用logo对tRFs两端的序列进行分析, 发现了4个有序列特征(其中3个未见报道)和1个无序列特征的酶切位点; 通过NCBI Blast预测了tRF靶基因, 发现其大多靶向转座因子。研究结果对揭示tRF产生机制以及水稻雄配子体发育研究有一定的参考价值。 相似文献
13.
Yoko Mizuta Tetsuya Higashiyama 《The Plant journal : for cell and molecular biology》2014,78(3):516-526
Sexual reproduction is an essential biological event for proliferation of plants. The pollen tube (PT) that contained male gametes elongates and penetrates into the pistils for successful fertilization. However, the molecular mechanisms of plant fertilization remain largely unknown. Here, we report a transient inhibition of gene function using phosphorothioate antisense oligodeoxynucleotides (AS‐ODNs) without cytofectin, which is a simple way to study gene function in Arabidopsis thaliana PTs. The PTs treated with AS‐ODNs against both ANX1 and ANX2 showed short, knotted, and ruptured morphology in vitro/semi‐in vitro, whereas normal PT growth was shown in its sense control in vitro/semi‐in vitro. PT growth was impaired in a manner dependent on the dose of AS‐ODNs against both ANX1 and ANX2 above 10 μm . The treatment with AS‐ODNs against ROP1 and CalS5 resulted in waving PTs and in short PTs with a few callose plugs, respectively. The expression levels of the target genes in PTs treated with their AS‐ODNs were lower than or similar to those in the sense control, indicating that the inhibition was directly or indirectly related to the expression of each mRNA. The AS‐ODN against fluorescent protein (sGFP) led to reduced sGFP expression, suggesting that the AS‐ODN suppressed protein expression. This method will enable the identification of reproductively important genes in Arabidopsis PTs. 相似文献
14.
Dong-Jie Jia Xi Cao Wei Wang Xiao-Yun Tan Xue-Qin Zhang Li-Qun Chen De Ye 《植物学报(英文版)》2009,51(8):762-773
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 ( gnl2-1 ) and gnl2-2 in Arabidopsis thaliana , in which the pollen grains failed to germinate in vitro and in vivo . GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination. 相似文献
15.
Moll C von Lyncker L Zimmermann S Kägi C Baumann N Twell D Grossniklaus U Gross-Hardt R 《The Plant journal : for cell and molecular biology》2008,56(6):913-921
The formation of gametes is a key step in the life cycle of any sexually reproducing organism. In flowering plants, gametes develop in haploid structures termed gametophytes that comprise a few cells. The female gametophyte forms gametic cells and flanking accessory cells. During a screen for regulators of egg-cell fate, we isolated three mutants, lachesis (lis), clotho (clo) and atropos (ato), that show deregulated expression of an egg-cell marker. We have previously shown that, in lis mutants, which are defective for the splicing factor PRP4, accessory cells can differentiate gametic cell fate. Here, we show that CLOTHO/GAMETOPHYTIC FACTOR 1 (CLO/GFA1) is necessary for the restricted expression of egg- and central-cell fate and hence reproductive success. Surprisingly, infertile gametophytes can be expelled from the maternal ovule tissue, thereby preventing the needless allocation of maternal resources to sterile tissue. CLO/GFA1 encodes the Arabidopsis homologue of Snu114, a protein that is considered to be an essential component of the spliceosome. In agreement with their proposed role in pre-mRNA splicing, CLO/GFA1 and LIS co-localize to nuclear speckles. Our data also suggest that CLO/GFA1 is necessary for the tissue-specific expression of LIS. Furthermore, we demonstrate that ATO encodes the Arabidopsis homologue of SF3a60, a protein that has been implicated in pre-spliceosome formation. Our results thus establish that the restriction of gametic cell fate is specifically coupled to the function of various core spliceosomal components. 相似文献
16.
Yan Zhang Junmin He Sheila McCormick 《The Plant journal : for cell and molecular biology》2009,58(3):474-484
Reproduction of flowering plants requires the growth of pollen tubes to deliver immotile sperm for fertilization. Pollen tube growth resembles that of polarized metazoan cells, in that some molecular mechanisms underlying cell polarization and growth are evolutionarily conserved, including the functions of Rho GTPases and the dynamics of the actin cytoskeleton. However, a role for AGC kinases, crucial signaling mediators in polarized metazoan cells, has yet to be shown in pollen tubes. Here we demonstrate that two Arabidopsis AGC kinases are critical for polarized growth of pollen tubes. AGC1.5 and AGC1.7 are pollen-specific genes expressed during late developmental stages. Pollen tubes of single mutants had no detectable phenotypes during in vitro or in vivo germination, whereas those of double mutants were wider and twisted, due to frequent changes of growth trajectory in vitro . Pollen tubes of the double mutant also had reduced growth and were probably compromised in response to guidance cues in vivo . In the agc1.5 background, downregulation of AGC1.7 using an antisense construct phenocopied the growth defect of double mutant pollen tubes, providing additional support for a redundant function of AGC1.5/1.7 in pollen tube growth. Using the actin marker mouse Talin, we show that pollen tubes of double mutants had relatively unaffected longitudinal actin cables but had ectopic filamentous actin, indicating disturbed control of polarity. Our results demonstrate that AGC1.5 and AGC1.7 are critical components of the internal machinery of the pollen tube leading to polarized growth of pollen tubes. 相似文献
17.
Dong-Jie Jia ;Xi Cao ;Wei Wang ;Xiao-Yun Tan ;Xue-Qin Zhang ;Li-Qun Chen ;De Ye 《Acta Botanica Sinica》2009,(8):762-773
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 (gnl2-1) and gn12-2 in Arabidopsis thaliana, in which the pollen grains failed to germinate in vitro and in vivo. GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination. 相似文献
18.
The protein kinase cdc2 is conserved throughout eukaryotes and acts as a key regulator of the cell cycle. In plants, A-type cyclin-dependent kinase (CDKA), a homologue of cdc2, has a role throughout the cell cycle. Here we show that a loss-of-function mutation in CDKA;1, encoding the only Arabidopsis CDKA, results in lethality of the male gametophyte. Heterozygous plants produced mature siliques containing about 50% aborted seeds, and segregation distortion was observed in paternal inheritance. Microspores normally undergo an asymmetric cell division, pollen mitosis I (PMI), to produce bicellular pollen grains. The larger vegetative cell does not divide, but the smaller generative cell undergoes mitosis, PMII, to form the two sperm cells, thereby generating tricellular pollen grains. The cdka-1 mutant, however, produces mature bicellular pollen grains, consisting of a single sperm-like cell and a vegetative cell, due to failure of PMII. The mutant sperm-like cell is fertile, and preferentially fuses with the egg cell to initiate embryogenesis. As the central cell nucleus remains unfertilized, however, double fertilization does not occur. In heterozygous plants, the embryo is arrested at the globular stage, most likely because of loss of endosperm development, whereas it is arrested at the one- or two-cell stage in presumptive homozygous plants. Thus, CDKA;1 is essential for cell division of the generative cell in male gametogenesis. 相似文献
19.
Steffen JG Kang IH Macfarlane J Drews GN 《The Plant journal : for cell and molecular biology》2007,51(2):281-292
The angiosperm female gametophyte typically consists of one egg cell, two synergid cells, one central cell, and three antipodal cells. Each of these four cell types has unique structural features and performs unique functions that are essential for the reproductive process. The gene regulatory networks conferring these four phenotypic states are largely uncharacterized. As a first step towards dissecting the gene regulatory networks of the female gametophyte, we have identified a large collection of genes expressed in specific cells of the Arabidopsis thaliana female gametophyte. We identified these genes using a differential expression screen based on reduced expression in determinant infertile1 (dif1) ovules, which lack female gametophytes. We hybridized ovule RNA probes with Affymetrix ATH1 genome arrays and validated the identified genes using real-time RT-PCR. These assays identified 71 genes exhibiting reduced expression in dif1 ovules. We further validated 45 of these genes using promoter::GFP fusions and 43 were expressed in the female gametophyte. In the context of the ovule, 11 genes were expressed exclusively in the antipodal cells, 11 genes were expressed exclusively or predominantly in the central cell, 17 genes were expressed exclusively or predominantly in the synergid cells, one gene was expressed exclusively in the egg cell, and three genes were expressed strongly in multiple cells of the female gametophyte. These genes provide insights into the molecular processes functioning in the female gametophyte and can be used as starting points to dissect the gene regulatory networks functioning during differentiation of the four female gametophyte cell types. 相似文献
20.