首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated the role of gibberellic acid (GA3) and indole acetic acid (IAA) in the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Rupr. var.japonica Maxim seedlings. Forty-five seedlings were used and divided into nine groups that included five seedlings in each group. Seedlings were treated with applications of GA3 alone at concentrations of 2.89 × 10-8and 2.89 × 10-7 μmol/L, IAA alone at concentrations of 5.71×10-8 and 5.71 ×10-7 μmol/L, or their combination to the apical bud of the stem using a micropipette. Seedlings were positioned horizontally after the first treatment.The same treatments were repeated six times per week. At the end of the experiment, all seedlings were harvested. Then, stem segments were cut under a light microscope. Application of exogenous GA3 at the higher concentration stimulated the upward bending of stems, whereas exogenous IAA had no effect. A synergistic effect of GA3 and IAA on upward stem bending was observed following application of the two combinations of GA3 and IAA. Moreover, application of exogenous GA3 at the higher dose stimulated wood formation on both the upper and lower sides of the stems, whereas the mixture of GA3 and IAA had a synergistic effect on wood formation in horizontal stems. Application of exogenous IAA alone at the lower concentration (5.71×10-8 μ mol/L) or application of a mixture of the higher concentrations of GA3 (2.89 × 10-7 μmol/L) and IAA (5.71×10-7 μmol/L) inhibited the development of gelatinous fibers (the G-layer) of tension wood on the upper side of the horizontal stems. The differentiation of gelatinous fibers of tension wood was not inhibited by GA3when it was applied alone, whereas the development of the gelatinous fibers of tension wood was strongly affected by the application of IAA. The findings of the present study suggest that the development of the G-layer is not related to the dose of GA3, but needs a relatively lower concentration of IAA.  相似文献   

2.
Plant hormone response mutants   总被引:4,自引:0,他引:4  
A variety of plant hormone response mutants has now been described, and is surveyed in this article. In addition to hormone-insensitive mutant phenotypes with defects in hormone-related features, there exist mutants apparently constitutive for the gibberellin responses, and also a mutant hyper-responsive to gibberellin. Although there is still little biochemical evidence on the nature of these mutants, the emerging picture of their genetic dominance relationships has given rise to tentative suggestions of the involvement of represser functions in hormonal control systems.  相似文献   

3.
Abstract

The role of calcium as a second messenger in plant cells has been recognized in a number of physiological processes. As described for animal systems, plant cells contain all the elements necessary for coupling the external signals to a specific response by regulation of calcium levels. However, the evidence that Ca2+ can be considered a second messenger for hormone response in plants is still circumstantial, besides several reports on the subject have been produced. All the hormone effects may in some tissues be regulated by calcium metabolism, but only for few of them a precise role of this cation has been established. The studies on the different hormones will be reviewed and discussed.  相似文献   

4.
The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5×10^-7μmol/L AVG, 12.5×10^-8μmol/L AVG, and 11.8×10^-8μmol/Lmol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5×10^-7μmol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5×10^-7μmol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var.japonica Maxim. seedlings.  相似文献   

5.
The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim, seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2,4, 7,14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5 x 10-7 μmol/L AVG, 12.5 x 10-8 μmol/L AVG, and 11.8 x 10-8 μmol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5 x 10-7 μnol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5 x 10-7 μmol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var. japonica Maxim, seedlings.  相似文献   

6.
Free and conjugated IAA levels were determined in wood, bark and cambial sap of M.9, M.26 and MM.106 apple rootstock genotypes differing in growth vigour. The measurements were done on May 15th, June 15th and July 15th. The level of free IAA in bark and wood of the tested trees varied from 27.0 to 52.7 ng·g−1 f.w. while the conjugated hormone content averaged 3–5 times higher. In the bark and wood samples, the differences in auxin content between rootstock genotypes and the time of stem harvesting were insignificant. The level of free IAA in cambial sap was on average 10 to 20 times higher than in both bark and wood tissues, while the conjugated hormone level varied from none (below detection limit) to 37 ng·g−1 f.w. Content of free IAA level in cambial sap from dwarf M.9 rootstock was significantly lower than that in either of the more vigorous genotypes. In both vigorous rootstocks IAA level in cambial sap remained at a similar level at all sampling dates but M.9 cambial sap showed a trend towards decreasing auxin content later in the growing season.  相似文献   

7.
对水平放置2年生水曲柳(Franxinus mandshurica)幼苗应用赤霉素(GAs)及其合成抑制剂烯効唑(Uni.-P)对幼苗的负向重性及木材形成中的生理作用进行了探讨。每种生长调节物质100μg溶于50%的丙酮中,每周1次处理于幼苗顶端,连续处理5周,并在第1次处理后24h,将幼苗水平放置。在实验期间,对照及GAs处理幼苗茎负向重性受到了促进,而Uni.-P处理则受到了抑制。GAs增加了茎上侧具有增厚细胞壁的胶质纤维细胞的数量。Uni.-P抑制了茎上侧的木材形成,但没有影响胶质纤维的分化。对照区木质部中纤维素与木质素的比值上侧大于下侧。该比值在上侧GA4处理区大于GA3处理区及对照区。该结果说明,胶质纤维的分化和木质部的增加对负向重性都是重要的;在该种中,赤霉素对于木质部细胞形成可能比对胶质纤维分化的影响更大。  相似文献   

8.
Background and Aims Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. Methods Gibberellic acid (GA(3)), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Ro) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. Key Results It was found that GA(3) stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA(3) stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. Conclusions The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus.  相似文献   

9.
红松应力木木材形成组织的化学组成特征分析   总被引:3,自引:0,他引:3  
朱莉  石江涛 《植物研究》2012,32(2):232-236
检测分析了天然红松应力木木材形成组织的乙酰溴木质素含量,傅里叶变换红外光谱和X射线衍射图谱。结果表明:木材形成组织木质素含量小于成熟木材,应压木中木质素含量高于正常材;木材形成组织中羟基特征峰的位置有异于成熟木材,在波数1 034~1 510 cm-1处的吸收峰有明显差异,化学官能团的相对吸收强度低于成熟木材;应压木木材形成组织红外光谱特征峰的位置和峰形与对应木、正常木的基本相同;应压木全谱图各化学官能团的相对吸收强度大于正常木。木材形成组织X射线衍射强度低于成熟木材,应压木低于正常材和对应木;木材形成组织纤维素相对结晶度小于成熟木材,应压木低于正常材和对应木。说明木材形成过程中组织的化学特征是动态变化的。应力木形成中木材组织化学特征就与正常木有差异。  相似文献   

10.
11.
《Current biology : CB》2021,31(16):3678-3686.e11
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 M) that did not affect root growth. Calmodulin antagonists ( 1M) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip ( 1M) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists ( 1 M) become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.  相似文献   

14.
Active phototropic bending of non-elongating and radially growing portion of stems (woody stems) has not been previously documented, whereas negative gravitropic bending is well known. We found phototropic bending in woody stems and searched for the underlying mechanism. We inclined 1-year-old Quercus crispula Blume seedlings and unilaterally illuminated them from a horizontal direction perpendicular to ('normal' illumination) or parallel to ('parallel' illumination) the inclination azimuth. With normal illumination, active phototropic bending and xylem formation could be evaluated separately from the negative gravitropic response and vertical deflection resulting from the weight of the seedlings. One-year-old stems with normal illumination bent significantly, with asymmetrical xylem formation towards the illuminated upper surface and side of the stem, whereas those with parallel illumination showed non-significant lateral bending, with asymmetrical xylem formation only on the upper side. A mechanical model was built on the assumption that a bending moment resulted from the asymmetrical xylem formation during phototropic bending of the woody stems. The model fitted the relationship between the observed spatial distributions of the xylem and the observed lateral bending, and thus supported the hypothesis that phototropic bending of woody stems results from asymmetrical xylem formation, as such occurs during gravitropism.  相似文献   

15.
16.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

17.

Background and Aims

Gibberellin stimulates negative gravitropism and the formation of tension wood in tilted Acacia mangium seedlings, while inhibitors of gibberellin synthesis strongly inhibit the return to vertical growth and suppress the formation of tension wood. To characterize the role of gibberellin in tension wood formation and gravitropism, this study investigated the role of gibberellin in the development of gelatinous fibres and in the changes in anatomical characteristics of woody elements in Acacia mangium seedlings exposed to a gravitational stimulus.

Methods

Gibberellin, paclobutrazol and uniconazole-P were applied to the soil in which seedlings were growing, using distilled water as the control. Three days after the start of treatment, seedlings were inclined at 45 ° to the vertical and samples were harvested 2 months later. The effects of the treatments on wood fibres, vessel elements and ray parenchyma cells were analysed in tension wood in the upper part of inclined stems and in the opposite wood on the lower side of inclined stems.

Key Results

Application of paclobutrazol or uniconazole-P inhibited the increase in the thickness of gelatinous layers and prevented the elongation of gelatinous fibres in the tension wood of inclined stems. By contrast, gibberellin stimulated the elongation of these fibres. Application of gibberellin and inhibitors of gibberellin biosynthesis had only minor effects on the anatomical characteristics of vessel and ray parenchyma cells.

Conclusions

The results suggest that gibberellin is important for the development of gelatinous fibres in the tension wood of A. mangium seedlings and therefore in gravitropism.  相似文献   

18.
GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation and the G-layer, we studied the effect of GA3 and GA4 and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups;one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 × 10-9 μmol acetone as control, 5.78 × 10-8 μmol gibberellic acid (GA3), 6.21 × 10-8 μmol GA4, and 6.86 × 10-8 μmol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism,whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA3 and GA4 promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA3 and GA4 affect wood production more than differentiation of the gelatinous layer in wood fibers;G-layer development may be regulated by other hormones via the indirect-role of GA3 and GA4 in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.  相似文献   

19.
Auxin action: the search for the receptor   总被引:2,自引:1,他引:1  
Abstract. The molecular specificity of the substances which have auxin activity implies the existence of specific receptors. There have been many efforts to identify and isolate these receptors on the assumption that they should bind auxins with affinities coordinate to their activities in bioassays. However, the known complexity of auxin uptake and metabolism make this assumption seriously deficient. Although several such binding sites have, in fact, been identified, proof of a connection between these sites and auxin action has been lacking. Definite proof would include a requirement that the site be reconstituted, together with the appropriate macro-molecular machinery, to construct a model of an auxin response. At the moment, our ignorance of the biochemistry and molecular biology of auxin growth responses makes such a proof difficult. However, two avenues of research promise to accelerate the rate of progress. The increasingly potent tools of molecular biology should soon allow the dissection of auxin-regulated gene expression, while improved knowledge of plasma membrane proton pumps and the mechanism of cell wall biosynthesis should produce, in parallel, an understanding of the auxin regulation of acid growth.  相似文献   

20.
A Genomic and Molecular View of Wood Formation   总被引:1,自引:0,他引:1  
Wood formation is a process derived from plant secondary growth. Different from primary growth, plant secondary growth is derived from cambium meristem cells in the vascular and cork cambia and leads to the girth increase of the plant trunk. In the secondary growth process, plants convert most of photosynthesized products into various biopolymers for use in the formation of woody tissues. This article summarizes the new developments of genomic and genetic characterization of wood formation in herbaceous model plant and tree plant systems. Genomic studies have categorized a collection of the genes for which expression is associated with secondary growth. During wood formation, the expression of many genes is regulated in a stage-specific manner. The function of many genes involved in wood biosyntheses and xylem differentiation has been characterized. Although great progress has been achieved in the molecular and genomic understanding of plant secondary growth in recent years, the profound genetic mechanisms underlying this plant development remain to be investigated. Completion of the first tree genome sequence (Populus genome) provides a valuable genomic resource for characterization of plant secondary growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号