首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In the present study, we investigated whether growth and main nutrient ion concentrations of cabbage (Brassica campestris L.) could be increased when plants were subjected to different NH4+/NO3- ratios. Cabbage seedlings The results showed that cabbage growth was reduced by 87% when the proportion of NH4+-N in the nutrient solution was more than 75% compared with a ratio NH4+/NO3- of 0.5:0.5 35 d after transplanting, suggesting a possible toxicity seedling weight, root length, and H2PO4- (P), K+, Ca2+, and Mg2+ concentrations were all higher than those in plants 0.5 NH4+/NO3-. The present results indicate that an appropriate NH4+/NO3- ratio improves the absorption of other nutrients and maintains a suitable proportion of N assimilation and storage that should benefit plant growth and the quality of cabbage as a vegetable.  相似文献   

2.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   

3.
4.
The rate of nitrogen uptake by seven Sphagnum species, which from a gradient from hummock to hollow and from ombrotrophic to minerotrophic conditions, was measured as the decrease in the concentrations of NH4+ and NO3 from solutions in which capitula were grown under laboratory conditions.
The highest uptake rate was by individuals of each species with large capitula and a high number of ion exchange sites, i.e. lawn species ( S. pulchrum , S. fallax , S. papillosum and S. magellanicum ). On a dry-mass basis, the most effective species were the hummock species ( S. fuscum and S. rubellum ), even though these species have a low dry mass. Hummock species, which occur in high densities and have high potential N-uptake rates on a dry-mass basis, were the most effective species in retaining available nitrogen.  相似文献   

5.
Cyanidium caldarium (Tilden) Geitler, a non-vacuolate unicellular alga, resuspended in medium flushed with air enriched with 5% CO2, assimilated NH4+ at high rates both in the light and in the dark. The assimilation of NO3, by contrast, was inhibited by 63% in the dark. In cell suspensions flushed with CO2-free air, NH4+ assimilation decreased with time both in the light and in the dark and ceased almost completely after 90 min. The addition of CO2 completely restored the capacity of the alga to assimilate NH4+. NO3 assimilation, by contrast, was 33% higher in the absence of CO2 and was linear with time. It is suggested that NO3 and NH4+ metabolism in C. caldarium are differently controlled in response to the light and carbon conditions of the cell.  相似文献   

6.
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+.  相似文献   

7.
The long-term effects of different nitrogen sources on the endogenous IAA and cytokinin levels in two bromeliad species were investigated. In nature, Vriesea philippocoburgii is a tank-forming epiphytic bromeliad which uses the tank water reservoir as a substitute for soil, whereas Tillandsia pohliana is a tankless atmospheric epiphytic species. A culture was established from seeds germinated in aseptic condictions, and the plantlets were grown for 6 months in a modified Knudson medium to which was added 8 mol m−3 of nitrogen in the form of NO3, NH4+ or urea. The hormonal contents of the bromeliad shoots were determined by means of high-performance liquid chromatography (HPLC), coupled to an enzyme-linked immunosorbent assay (ELISA) for indole-3-acetic acid (IAA), isopentenyladenine (iP), isopentenyladenosine ([9R]iP), zeatin (Z) and zeatin riboside ([9R]Z). Nitrogen supplied in the form of urea gave the highest values of fresh and dry weights for both species, and this was positively correlated to IAA levels. The cytokinin patterns showed that isopentenyladenosine was the predominant form for both species in all samples. However, urea induced the highest level of this riboside form and also the highest level of total cytokinins for V. philippocoburgii, while NH4+ had the same effect on the atmospheric species. These results are discussed in terms of the different growth habits of these two species in nature. It is suggested that urea may be an important source of nitrogen often found inside the tank of V. philippocoburgii. NO3 treatment increased the IAA/Cks balance, mainly for V. philippocoburgii, while urea and NH4+ shifted this ratio in favour of cytokinins, thus apparently inhibiting root development in both species.  相似文献   

8.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

9.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

10.
Abstract: NH4+‐grown plants are more sensitive to light stress than NO3?‐grown plants, as indicated by reduced growth and intervenal chlorosis of French bean (Phaseolus vulgaris L.). Measuring the time course of Fv/Fm ratios under photoinhibitory light regimes did not reveal any difference in PS II damage between NO3?‐ and NH4+‐grown plants, in spite of some indications of higher energy quenching in NO3?‐grown plants. Also, a direct action of NH4+ as an uncoupler at the thylakoid membrane could be excluded. Instead, biochemical analysis revealed enhanced lipid peroxidation and higher activity of scavenging enzymes in NH4+‐grown plants indicating that these plants make use of metabolic pathways with stronger radical formation. Evidence for higher rates of photorespiration in NH4+‐grown plants came from experiments showing that electron flux and O2 evolution were decreased by SHAM in NH4+‐grown plants, and by antimycin A in NO3?‐grown plants. Further, the comparison of electron flux and of photoacoustic measurements of O2 evolution suggested that in NH4+‐grown plants the Mehler reaction was also increased, at least in the induction phase. However, the major cause of N form‐dependent stress sensitivity is assumed to be in the coupling between photosynthesis and respiration, i.e., NO3?‐grown plants can utilize the TCA cycle for the generation of C skeletons for amino acid synthesis, thus improving the ATP: reductant balance, whereas NH4+‐grown plants have enhanced rates of photorespiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号