首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Receptor-mediated endocytosis of alpha-N-acetylglucosaminidase by cultured epithelial rat liver cells is inhibited by mannose, L-fucose and most effectively by mannose 6-phosphate. Endocytosis of alpha-N-acetylglucosaminidase is lost after treatment of the enzyme with alkaline phosphatase. These findings indicate that epithelial rat liver cells possess cell surface receptors that recognize a phosphorylated carbohydrate on alpha-N-acetylglucosaminidase, as was previously reported for cell surface receptors of human skin fibroblasts. Inhibition of alpha-mannosidase endocytosis by epithelial rat liver cells in the presence of mannose 6-phosphate and loss of enzyme endocytosis after treatment with alkaline phosphatase suggest that this enzyme is recognized by the same receptor.  相似文献   

3.
Adsorptive endocytosis of alpha-N-acetylglucosaminidase from human urine by isolated rat hepatocytes is inhibited by glycoproteins, polysaccharides and sugars that are known to bind to cell-surface receptors specific for either terminal galactose/N-acetylgalactosamine residues, terminal mannose residues or mannose 6-phosphate residues. Recognition of alpha-N-acetylglucosaminidase by a cell-surface receptor specific for terminal galactose/N-acetylgalactosamine residues is supported by the observations (a) that neuraminidase pretreatment of the enzyme enhances endocytosis, (b) that beta-galactosidase treatment decreases endocytosis and (c) that neuraminidase pretreatment of hepatocytes decreases alpha-N-acetylglucosaminidase endocytosis. Recognition of alpha-N-acetylglucosaminidase via receptors recognizing mannose 6-phosphate residues is lost after treatment of the enzyme with alkaline phosphatase and endoglucosaminidase H. The effect of endoglucosaminidase H supports the view that the mannose 6-phosphate residues reside in N-glycosidically linked oligosaccharide side chains of the high-mannose type. The weak inhibition of endocytosis produced by compounds known to interact with cell-surface receptors specific for mannose residues suggests that this recognition system plays only a minor role in the endocytosis of lysosomal alpha-N-acetylglucosaminidase by hepatocytes.  相似文献   

4.
The biosynthesis of alpha-N-acetylglucosaminidase in normal and Sanfilippo B fibroblasts was studied by labeling cells with [35S]methionine and isolation of the enzyme by immunoprecipitation. The immunoprecipitated polypeptides were separated by polyacrylamide gel electrophoresis and visualized by fluorography. alpha-N-acetylglucosaminidase is synthesized as a precursor of an apparent mol. wt. of 87,000. Intracellular processing of the precursor yields two polypeptides of apparent mol. wts. of 73,000 and 76,000 via several intermediates. It is accomplished within 3 days after synthesis. Less than 30% of the newly synthesized precursor is secreted. In the presence of 10 mM NH4Cl, secretion is enhanced to more than 80%. In our study, no alpha-N-acetylglucosaminidase polypeptides could be detected in fibroblasts from patients affected with either the severe or mild form of Sanfilippo disease, type B.  相似文献   

5.
The biosynthesis of alpha-N-acetylglucosaminidase was studied in cultured human kidney carcinoma cells by labeling cells with 35S-methionine, isolation of the enzyme by immunoprecipitation and analysis on gel electrophoresis of the denatured polypeptide(s) and analysis of the native enzyme on linear sucrose gradient centrifugation. The enzyme is synthesized as precursor forms of apparent molecular weight 82,000-86,000. Processing of these precursors yields a polypeptide of apparent molecular weight of 80,000. The precursor-product relationship was indicated by pulse-chase as well as endocytosis experiments. Sucrose gradient centrifugation of the native enzyme shows that, extracellularly, the molecule is present with a molecular weight of 80,000; intracellularly, 80-90% of the enzyme is present with an apparent molecular weight of 240,000. We suggest that this is a polymeric form and that polymerization of alpha-N-acetylglucosaminidase is a late event of the maturation process.  相似文献   

6.
A deficiency in alpha-N-acetylglucosaminidase is known as mucopolysaccharidosis IIIB or Sanfilippo B syndrome. We purified this enzyme almost 39,000-fold from liver to homogeneity with 3% recovery. Use of concanavalin A (Con A)-Sepharose and heparin-Sepharose resulted in 13.4-fold and 11.6-fold purifications of the enzymatic activity, respectively. The molecular mass was estimated to be 300 kDa by gel filtration and 80 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The isoelectric point was 5.1, optimal pH was 4.5, and the Km for p-nitrophenyl alpha-N-acetylglucosamine was 0.13-0.20 mM. The purified enzyme was stable at 50 degrees C for 1 h and within the pH range of 6.5-8.5. Anti-serum against the purified enzyme raised in BALB/c mice inhibited the activities of alpha-N-acetylglucosaminidase.  相似文献   

7.
1. Pretreatment of cultured human skin fibroblasts with convanavalin A and wheat germ agglutinin inhibited endocytosis of alpha-N-acetylglucosaminidase and increased extracellular accumulation of beta-N-acetylglucosaminidase. 2. These effects were dose-dependent, reversible and could be prevented by haptenic carbohydrates, such as methyl alpha-D-mannoside or N-acetylglucosamine. 3. Pretreatment of fibroblasts with di- and monovalent succinylated concanavalin A inhibited alpha-N-acetylglucosaminidase endocytosis, but had no effect on extracellular beta-N-acetylglucosaminidase accumulation. 4. Concanavalin A-alpha-N-acetylglucosaminidase complexes become internalized via the recognition of the lectin. Complex formation prevents recognition of the phosphorylated carbohydrate on lysosomal enzymes that interacts with cell surface receptors specific for lysosomal enzymes. The inhibitory effect of all lectins tested on lysosomal enzyme endocytosis suggests that the cell surface receptors for lysosomal enzymes interact either directly with lectins or are closely linked to lectin receptors. The effect of polyvalent lectins on extracellular lysosomal enzyme accumulation is ascribed to their alteration of membrane fluidity.  相似文献   

8.
NAGLU mutations underlying Sanfilippo syndrome type B.   总被引:4,自引:0,他引:4  
Sanfilippo syndrome type B (mucopolysaccharidosis III B) is a rare autosomal recessive disease caused by deficiency of alpha-N-acetylglucosaminidase, one of the enzymes required for the lysosomal degradation of heparan sulfate. The gene for this enzyme, NAGLU, recently was isolated, and several mutations were characterized. We have identified, in amplified exons from nine fibroblast cell lines derived from Sanfilippo syndrome type B patients, 10 additional mutations: Y92H, P115S, Y140C, E153K, R203X, 650insC, 901delAA, P358L, A664V, and L682R. Four of these mutations were found in homozygosity, and only two were seen in more than one cell line. Thus, Sanfilippo syndrome type B shows extensive molecular heterogeneity. Stable transfection of Chinese hamster ovary cells, by cDNA mutagenized to correspond to the NAGLU missense mutations, did not yield active enzyme, demonstrating the deleterious nature of the mutations. Nine of the 10 amino acid substitutions identified to date are clustered near the amino or the carboxyl end of alpha-N-acetylglucosaminidase, suggesting a role for these regions in the transport or function of the enzyme.  相似文献   

9.
The amount of agonist activity displayed by the antiglucocorticoid dexamethasone mesylate (Dex-Mes) for the induction of tyrosine aminotransferase (TAT) in rat hepatoma cells is greater than for glutamine synthetase and varies over a period of weeks. This variation, which has been reproduced over a period of 40 h by changing the density of the cells, suggests the involvement of a trans-acting factor. The target of this proposed trans-acting factor has now been localized to the region between -3.9 to -2.9 of the rat TAT gene from experiments with cells that were stably transfected with hybrid TAT/CAT constructs. Deletion experiments with transiently transfected TAT/tk promoter/CAT constructs revealed that this entire activity could be conveyed by a 21 bp sequence of the TAT gene. Gel shift experiments support the binding of a factor(s) to this 21 bp sequence. Thus the activity of the antagonist Dex-Mes is relatively independent of steroid structure and is largely determined by the further interactions of a trans-acting factor with the cis-acting sequence. We call this novel sequence a glucocorticoid modulatory element. A model is advanced which accounts for almost all of the results concerning TAT induction by glucocorticoids. This same model may also be useful in explaining why the amount of agonist activity of most antisteroids varies, even for different genes within the same cell.  相似文献   

10.
Assignment of the human tyrosine aminotransferase gene to chromosome 16   总被引:2,自引:0,他引:2  
Summary The liver enzyme tyrosine aminotransferase (TAT; EC 2.6.1.5) catalyzes the rate-limiting step in the catabolic pathway of tyrosine. Deficiency in TAT enzyme activity underlies the autosomally inherited disorder tyrosinemia II (Richner-Hanhart syndrome). Using a human TAT cDNA clone as hybridization probe, we have determined the chromosomal location of the TAT structural gene by Southern blot analysis of DNAs from a series of human x rodent somatic cell hybrids. The results assign the TAT gene to human chromosome 16.  相似文献   

11.
Administration of cortisol to an animal induces tyrosine aminotransferase (TAT) in the liver. A similar effect was observed after stimulation of resident liver macrophages (Kupffer cells) by dextran sulfate. Actinomycin D completely blocks enzyme induction both by cortisol and dextran sulfate, whereas their combined effect gives an additive result. In primary culture of hepatocytes, dextran sulfate inhibits TAT activity, but conditioned macrophage medium reliably increases enzyme activity in hepatocytes. However, incubation of isolated macrophages in the presence of dextran sulfate and such medium transfer into hepatocyte culture results in even more pronounced increase in TAT activity. In a combined culture of hepatocytes and non-parenchymal liver cells, reproducing intercellular interactions in vitro, cortisol and non-parenchymal cells exhibit an additive effect on TAT activity. These results show that liver macrophages release a factor of unknown nature launching the mechanism of TAT induction independently of cortisol, a classic TAT inducer.  相似文献   

12.
alpha-N-Acetylglucosaminidase (EC 3.2.1.50) was purified from human placenta by a four-step procedure including ammonium sulfate precipitation, affinity chromatography with immobilized antibodies against urinary alpha-N-acetylglucosaminidase, gel chromatography and discontinuous gel electrophoresis with a 30% recovery and 26 300-fold purification. Immunological methods revealed the contamination with about 10% non-alpha-N-acetylglucosaminidase protein. Isoelectric focusing led to a distribution of activity between 4.3 and 6.5 with maxima at pH 5.1 and pH 5.7. After treatment with neuraminidase, alpha-N-acetylglucosaminidase activity assembled at pH 5.7. The multiple isoelectric forms were endocytosed with different rates by cultured human skin fibroblasts. Placenta alpha-N-acetylglucosaminidase has an apparent molecular weight of 304 000 and contains 23.4% carbohydrate consisting of glucose, galactose, mannose, hexosamines and neuraminic acid. Gel electrophoresis in the presence of 0.1% sodium dodecylsulfate separated placenta alpha-N-acetylglucosaminidase into subunits with molecular weights of 86 500 and 81 000. The activity towards various substrates, the kinetics of hydrolysis, the pH optimum and the stability of the catalytic activity were assayed.  相似文献   

13.
The present study was conducted to examine the nature of the increase in tyrosine aminotransferase (TAT) activity by acute ethanol administration. A significant rise in aminotransferase activity was observed as early as 1 hr after intact rats were gavaged with ethanol. Ethanol administration also increased TAT activity in adrenalectomized rats. Inhibition of ethanol metabolism by pyrazole administration had no effect on the ethanol-induced increase in TAT activity. Immunochemical analyses revealed that the enhancement of TAT activity in ethanol-fed rats correlated with an increase in aminotransferase protein. Measurement of the rate of TAT synthesis showed that in ethanol-fed rats, [3H]leucine was incorporated into the aminotransferase protein at a higher rate than in controls by a factor which was similar to the enhancement in enzyme activity. Our findings indicate that an acceleration of TAT synthesis fully accounts for the increase in TAT activity during the early stage of enzyme induction. TAT induction by ethanol administration is not dependent upon an increase in adrenal corticosteroid production, nor does it require ethanol metabolism.  相似文献   

14.
Adsorptive endocytosis of lysosomal enzymes by fibroblasts and hepatocytes involves binding to cell surface receptors that recognize on lysosomal enzymes a phosphorylated carbohydrate, most likely a mannose 6-phosphate residue [Kaplan et al. (1977) Proc. Natl Acad. Sci. U.S.A. 74, 2026-2030; Ullrich et al. (1978) Hoppe-Seyler's Z. Physiol. Chem. 359, 1591-1598]. Loss of alpha-N-acetylglucosaminidase endocytosis after treatment with endoglucosaminidase H indicated that the recognition site of alpha-N-acetylglucosaminidase is located on N-glycosidically linked oligosaccharides of the high mannose type. Acidic oligosaccharides with an average molecular weight of 2200 were liberated from alpha-N-acetylglucosaminidase by endoglucosaminidase H. These oligosaccharides were susceptible to degradation by alkaline phosphatase, alpha-mannosidase and beta-N-acetylglucosaminidase. At the non-reducing terminal these oligosaccharides bear phosphorylated mannose and/or N-acetylglucosamine residues.  相似文献   

15.
Insulin-mediated regulation of glucocorticoid-induced expression of the liver-specific gene tyrosine aminotransferase was studied in a clone of the Reuber rat hepatoma cells. Insulin inhibited dexamethasone-induced chloramphenicol acetyltransferase expression from approximately 4 kb of TAT 5' flanking sequence. The degree of this inhibition was comparable to the response of the endogenous gene. A construct of approximately 3 kbp of 5' flanking sequence exhibited no significant basal expression but retained sensitivity to glucocorticoids and to insulin inhibition of the glucocorticoid response. Results of further analysis of the insulin response in deletion constructs and constructs containing glucocorticoid responsive elements ligated to a heterologous promoter suggest that in addition to the glucocorticoid response elements a region close to the start site in the TAT promoter is necessary for insulin to inhibit glucocorticoid-mediated induction of expression.  相似文献   

16.
Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxyphenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 ? resolution. The crystal structure revealed the interaction between the pyridoxal-5′-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.  相似文献   

17.
18.
19.
The activity of the hepatic enzyme tyrosine aminotransferase (TAT) is the sum of many diverse regulatory factors. These include the developmental stage of the animal, the hormonal and nutritional environment of the animal (or tissue culture cell), other extrinsic and intrinsic regulatory cycles and factors (including cytoplasmic substances), and chromatin structure. Although TAT is subject to a number of post-translational modifications, alterations in catalytic activity always parallel changes in enzyme amount. In a few instances this is due to a selective change in TAT degradation, but most are due to changes in the rate of aminotransferase synthesis. Recent studies have shown that TAT synthesis is generally directly correlated with the activity, and presumably amount, of the mRNA that codes for tyrosine aminotransferase.  相似文献   

20.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号