首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although polycyclic aromatic hydrocarbons (PAH) and alkanesare biodegradable at ambient temperature, in some cases low bioavailabilities are thereason for slow biodegradation. Considerably higher mass transfer rates and PAH solubilities and hence bioavailabilities can be obtained at higher temperatures. Mixed and pure cultures of aerobic, extreme thermophilic microorganisms (Bacillus spp., Thermus sp.) were used to degrade PAH compounds and PAH/alkane mixtures at 65 °C. The microorganismsused grew on hydrocarbons as sole carbon and energy source. Optimal growthtemperatures were in the range of 60–70 °C at pH values of 6–7. The conversion of PAH with 3–5 rings (acenaphthene, fluoranthene, pyrene, benzo[e]pyrene) was demonstrated. Efficient PAH biodegradation required a second, degradable liquid phase. Thermus brockii Hamburg metabolized up to 40 mg (l h)-1 pyrene and 1000 mg(1 h)-1 hexadecane at 70 °C. Specific growth rates of 0.43 h-1 were measured for this strain with hexadecane/pyrene mixtures as the sole carbon and energy source in a 2-liter stirred bioreactor. About 0.7 g cell dry weight were formed from 1 g hydrocarbon. The experiments demonstrate the feasibility and efficiency of extreme thermophilic PAH and alkane biodegradation.  相似文献   

2.
Summary Five strains of the Rhodococcus and Gordonia genera were evaluated for their potential use in bioremediation of polycyclic aromatic hydrocarbons (PAH) with or without another substrate (co-substrate). Their ability to produce biosurfactants or to degrade phenanthrene when growing on glucose, hexadecane and rapeseed oil was tested in liquid medium at 30 °C. All strains showed biosurfactant activity. The highest reduction in surface tension was recorded in whole cultures of Rhodococcus sp. DSM 44126 (23.1%) and R. erythropolis DSM 1069 (21.1%) grown on hexadecane and Gordonia sp. APB (20.4%) and R. erythropolis TA57 (18.2%) grown on rapeseed oil. Cultures of Gordonia sp. APB and G. rubripertincta formed emulsions when grown on rapeseed oil. After 14 days of incubation, Rhodococcus sp. DSM 44126 degraded phenanthrene (initial concentration 100 μg ml−1) as sole carbon source (79.4%) and in the presence of hexadecane (80.6%), rapeseed oil (96.8%) and glucose (below the limit of detection). The other strains degraded less than 20%, and then with a co-substrate only. Rhodococcus sp. DSM 44126 was selected and its performance evaluated in soil spiked with a mixture of PAH (200 mg kg−1). The effect of the addition of 0, 0.1 and 1% rapeseed oil as co-substrate was also tested. Inoculation enhanced the degradation of phenanthrene (55.7% and 95.2% with 0.1% oil and without oil respectively) and of anthracene (29.2% with 0.1% oil). Approximately 96% of anthracene and 62% of benzo(a)pyrene disappeared from the soil (inoculated and control) after 14 days and anthraquinone was detected as a metabolite. Rhodococcus sp. DSM 44126 was identified as Rhodococcus wratislaviensis by 16S rRNA sequencing and was able to degrade anthracene as sole carbon source in liquid culture.  相似文献   

3.
Summary From the anoxic zone of an oil shale leachate column three pyridine-degrading bacterial strains were isolated. Two strains were Gram-negative facultative anaerobic rods and one strain was a branched Gram-positive bacterium. The branched Gram-positive strain had the best pyridine-degrading ability. This organism was aerobic, non-motile, catalase positive, oxidase negative, and had no flagellum. The G+C content of the DNA was 66.5 mol%. The major menaquinone was MK-8(H2). The main cellular fatty acids were saturated and monounsaturated straight chains. This organism contained mycolic acid, meso-diaminopimelic acid, arabinogalactan and glycolyl residues in the cell wall. Due to morphological, physiological and chemotaxonomic characteristics this strain was placed in the genus Rhodococcus. The optimum culture conditions were as follows: temperature 32° C, pH 8.0 and 0.1% v/v of pyridine as sole carbon, energy and nitrogen source. Utilization of pyridine by a batch fermentor culture of Rhodococcus sp. was characterized by a specific growth rate of 0.13 h–1, growth yield of 0.61 mg cell·mg pyridine–1 and a doubling time of 5.3 h–1. Offprint requests to: S.-T. Lee  相似文献   

4.
A strain of the genus Rhodococcus, designated isolate S45-1, was isolated from an environmental water sample by enrichment, using the chlorinated paraffin Cereclor S45 as the sole carbon and energy source. This is the first report of microbial utilisation of chlorinated paraffins as sole source of carbon and energy. Biochemical studies of isolate S45-1 revealed little similarity with other Rhodococcus species. Isolate S45-1 was able to utilise 1-chloroalkanes of chain-length 12–18C as sole source of carbon and energy. Gas chromatography-mass spectrometry of the reaction medium indicated that γ-butyrolactone was formed as a product of 1-chlorotetradecane metabolism.  相似文献   

5.
Production of cholesterol oxidase by a newly isolated Rhodococcus sp.   总被引:1,自引:0,他引:1  
Fifteen strains of microorganisms with ability to degrade cholesterol were isolated. Among them a Gram-positive, non-motile, non-sporing bacterium with meso-DAP in the cell wall and with a rod-coccus cycle showed the highest ability for cholesterol degradation. It was identified as Rhodococcus sp. strain 2C and was deposited by code 1633 in Persian type culture collection (PTCC). This strain was able to produce high levels of both extracellular and cell-bound cholesterol oxidases in media containing cholesterol as a sole carbon source. The effects of medium composition and physical parameters on cholesterol oxidase production were studied. The optimized medium was found to contain cholesterol 0.15% (w/v), yeast extract 0.3% (w/v), diammonium hydrogen phosphate 0.1% (w/v), Tween 80 (0.05%). The optimum pH and temperature for cholesterol oxidase production in optimized medium were found to be 8–30 °C respectively. Triton X-100 showed the greatest effect in releasing the cell-bound enzyme. The first and most probably the main metabolite of cholesterol degradation was purified and identified as 4-cholestene-3-one.  相似文献   

6.
Cyclohexanone monooxygenase (CHMO), a type of Baeyer-Villiger oxidation, catalyzes the oxidation of cyclohexanone into ɛ-caprolactone, which has been utilized as a building block in organic synthesis. A bacterium that is capable of growth on cyclohexanone as a sole carbon source was recently isolated and was identified as Arthrobacter sp. L661. The strain is believed to harbor a CHMO gene (chnB), considering the high degradablity of cyclohexanone. In order to characterize the CHMO, a chnB gene was cloned from Arthrobacter sp. L661. The deduced amino acids of the chnB gene evidenced the highest degree of homology (90% identity) with the CHMO of Arthrobacter sp. BP2 (accession no. AY123972). The CHMO of L661 was shown to be functionally expressed in Escherichia coli cells, purified via affinity chromatography, and characterized. The specific activity of the purified enzyme was 24.75 μmol/min/mg protein. The optimum pH was 7.0 and the enzyme maintained over 70% of its activity for up to 24 h in a pH range of 6.0 to 8.0 at 4°C. The CHMO of L661 readily oxidized cyclobutanone and cyclopentanone whereas less activity was detected with those of Arthrobacter sp. BP2, Rhodococcus sp. Phi1, and Rhodococcus sp. Phi2, thereby suggesting that the CHMO of L661 evidenced the different substrate specificities compared with other CHMOs. These results can provide us with useful information for the development of biocatalysts applicable to commercial organic syntheses, especially because only a few CHMO genes have been identified thus far.  相似文献   

7.
The use of a plate screening technique allowed the direct isolation and quantification of polycylic aromatic hydrocarbon (PAH)-degrading bacteria from different soil sites. Bacteria that were able to grow on anthracene, phenanthrene, fluoranthene or pyrene as a sole carbon source were found with numbers between 103 and 105 colony-forming units (cfu)/g of soil dry weight, but only in samples that originated from PAH-contaminated sites. No isolates were found that could grow on perylene, triphenylene, benzo(a)pyrene or chrysene as sole carbon source. Bacteria that had been selected on the same PAH substrate showed a related degradation pattern for both other PAH and oil compounds and carbohydrate substrates even if they had been collected at distant soil sites. Based on these findings the isolates could be clustered into four different catabolic and taxonomic similarity groups. Taxonomic determination of representative isolates suggested that nocardioform actinomycetes of the genera Mycobacterium, Rhodococcus and Gordona represented a major part of the soil microflora able to mineralize PAH. Three new isolates able to grow on anthracene, pyrene or fluoranthene as the sole carbon source, respectively, have been isolated and identified (Sphingomonas paucimobilis BA2, Gordona sp. BP9, Mycobacterium sp. VF1). The ubiquitous presence of a potent and versatile mineralizing microflora in PAH-contaminated soils indicated that the microflora is not the limiting factor for the degradation of PAH with up to four rings.  相似文献   

8.
The influence of the precultivation with different carbon sources on the ability of three different bacterial strains (Sphingomonas sp. strain BA2, Gordona sp. strain BP9, Mycobacterium sp. strain VF1) to grow on phenanthrene. anthracene, pyrene or fluoranthene as the sole source of carbon and energy were studied. The strains were found to maintain their ability to grow on two of the four PAH after 30 serial transfers in liquid nutrient broth medium without selective pressure. The ability to grow on these PAH as the sole carbon and energy source was also maintained after curing experiments with acridine orange. The high stability of the PAH-degradation phenotype suggests that the tested strains carry at least parts of the PAH-degradation pathway genes on the chromosome. The PAH-degradation versatility of the strains was also influenced by the carbon source being used for precultivation. Possible reasons for the particularly good impact of the precultivation on hexadecane on the PAH degradation are discussed in this paper.  相似文献   

9.
Feng Z  Peng L  Chen M  Li M 《Folia microbiologica》2012,57(5):379-386
An agar-degrading bacterium, Rhodococcus sp. Q5, was isolated from printing and dyeing wastewater using a mineral salts agar plate containing agar as the sole carbon source. The bacterium grew from pH 4.0 to 9.0, from 15 to 35°C, and in NaCl concentrations of 0–5 %; optimal values were pH 6.0, 30°C, and 1 % NaCl. Maximal agarase production was observed at pH 6.0 and 30°C. The bacterium did not require NaCl for growth or agarase production. The agarase secreted by Q5 was inducible by agar and was repressed by all simple sugars tested except lactose. Strain Q5 could hydrolyze starch but not cellulose or carboxymethyl cellulose. Agarase activity could also be detected in the medium when lactose or starch was the sole source of carbon and energy. Strain Q5 could grow in nitrogen-free mineral media; an organic nitrogen source was more effective than inorganic carbon sources for growth and agarase production. Addition of more organic nitrogen (peptone) to the medium corresponded with reduced agarase activity.  相似文献   

10.
A diesel-degrading bacterium (strain IU5) isolated from oil-contaminated soil was characterized in this study. Fatty acid and 16s rDNA sequence analysis identified IU5 as a strain of Pseudomonas aeruginosa, and growth curve experiments identified the bacterium’s optimum conditions as pH 7 and 30 °C. P. aeruginosa IU5 degraded up to 60 of applied diesel (8500 mg/kg) over 13 days in a soil-slurry phase. In addition, this strain was able to grow on many other petroleum hydrocarbons as sole carbon sources, including crude oil, gasoline, benzene, toluene, xylene, and even PAHs such as naphthalene, phenanthrene and pyrene. Therefore, P. aeruginosa IU5 may be useful for bioremediation of soils and groundwater contaminated with a variety of hydrocarbons.  相似文献   

11.
Two microorganisms (NDKK48 and NDKY76A) that degrade long-chain cyclic alkanes (c-alkanes) were isolated from soil samples. Strains NDKK48 and NDKY76A were identified as Rhodococcus sp. and Gordonia sp., respectively. Both strains used not only normal alkane (n-alkane) but also c-alkane as a sole carbon and energy source, and the strains degraded more than 27% of car engine base oil (1% addition).  相似文献   

12.
A series of pure bacterial strains belonging mainly to theRhodococcus andPseudomonas genera were grown on one of the following polycyclic aromatic hydrocarbons (PAH) supplied as sole carbon and energy source: naphthalene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. In each case, a quantitative evaluation of the carbon repartition of the PAH degraded into CO2, biomass and water-soluble metabolites was carried out. In addition, the kinetics of oxygen consumption and of water-soluble metabolite accumulation during PAH biodegradation was followed with respirometric equipment. Satisfactory carbon balances were obtained and the data correlated well with oxygen consumption values. The results show that growth on PAH presents high mineralization yields (from 56% to 77% of carbon) and sizeable production of biomass (from 16% to 35% of carbon) and limited but significant accumulation of metabolites (from 5% to 23% of carbon). The mineralization yields were higher and biomass yields lower in the case of higher PAH. Some differences between strains were also observed.  相似文献   

13.
A marine mesophilic, irregular coccoid methanogen, which shows close resemblance toMethanococcus sp., was isolated from the biofilm of shiphulls docked in Los Angeles harbor. Hydrogen plus carbon dioxide or formate served as substrates for methanogenesis in a mineral salt medium. The isolate did not use acetate and methanol as sole source of carbon and energy. The organism had an optimal pH range of 6.8–7.0 and a temperature optimum of 37°C. Elevated levels of sodium chloride were required for optimum growth. Optimum levels of total sulfide and magnesium chloride for growth were 1.0mm and 10mm respectively. The isolate used ammonia as nitrogen source. The concentration of 30mm ammonium chloride supported maximum growth of the isolate.  相似文献   

14.
Aerobic biodegradation of nonylphenol by cold-adapted bacteria   总被引:12,自引:0,他引:12  
Three strains capable of mineralizing nonylphenol as sole carbon source were isolated from a sample of contaminated soil and characterized as two Pseudomonas spp. and a Stenotrophomonas sp. The two Pseudomonas spp. expressed characteristics typical of psychrophiles growing optimally of 10 °C and capable of growing at 0 °C. The Stenotrophomonas sp. was more likely psychrotrophic because it had an optimal temperature between 14 and 22 °C although it was not capable of growing at 4 °C. At 14 °C, one of the Pseudomonas spp. exhibited the highest rate of degradation of nonylphenol (4.4 mg l–1 d–1), when compared with axenic or mixed cultures of the isolates. This study represents, to the best of our knowledge, the first reported case of cold-adapted microorganisms capable of mineralizing nonylphenol.  相似文献   

15.
The bacterial strain RB1 has been isolated by enrichment cultivation with 2,4-dinitrophenol as the sole nitrogen, carbon, and energy source and characterized, on the basis of 16S rRNA gene sequence comparison, as a Rhodococcus species closely related to Rhodococcus opacus. Rhodococcus sp. strain RB1 degrades 2,4-dinitrophenol, releasing the two nitro groups from the compound as nitrite. The release of nitro groups from 2,4-dinitrophenol occurs in two steps. First, the 2-nitro group is removed as nitrite, with the production of an aliphatic nitro compound identified by 1H nuclear magnetic resonance and mass spectrometry as 3-nitroadipate. Then, this metabolic derivative is further metabolized, releasing its nitro group as nitrite. Full nitrite assimilation upon reduction to ammonia requires that an additional carbon source be supplied to the medium.  相似文献   

16.
A gram-negative rod-shaped bacterium capable of utilizing acrylonitrile as the sole source of nitrogen was isolated from industrial sewage and identified as Klebsiella pneumoniae. The isolate was capable of utilizing aliphatic nitriles containing 1 to 5 carbon atoms or benzonitrile as the sole source of nitrogen and either acetamide or propionamide as the sole source of both carbon and nitrogen. Gas chromatographic and mass spectral analyses of culture filtrates indicated that K. pneumoniae was capable of hydrolyzing 6.15 mmol of acrylonitrile to 5.15 mmol of acrylamide within 24 h. The acrylamide was hydrolyzed to 1.0 mmol of acrylic acid within 72 h. Another metabolite of acrylonitrile metabolism was ammonia, which reached a maximum concentration of 3.69 mM within 48 h. Nitrile hydratase and amidase, the two hydrolytic enzymes responsible for the sequential metabolism of nitrile compounds, were induced by acrylonitrile. The optimum temperature for nitrile hydratase activity was 55°C and that for amidase was 40°C; both enzymes had pH optima of 8.0.Abbreviations PBM phosphate buffered medium - GC gas chromatography - GC/MS gas chromatography/mass spectrometry  相似文献   

17.
一株芘降解菌的分离鉴定及其降解效果   总被引:2,自引:0,他引:2  
Zhang QQ  Zhao YJ  Yang CG  Liu FW  He J  Shen B  Ran W 《应用生态学报》2010,21(7):1851-1858
以芘为唯一碳源,采用平板升华法,从徐州市卧牛山焦化厂周围污染土壤中分离得到一株芘降解菌SE12.经形态观察、生理生化试验和16S rDNA鉴定,该菌株属于分枝杆菌属(Mycobacterium sp.)菌株,与快速生长型非致病性南非分枝杆菌(M.austroa fricanum ATCC33464)的同源性达到98%.SE12降解芘的最适pH和温度为pH9和30℃.当土壤芘初始含量为100和200mg.kg-1,SE12接种量为107CFU.g-1时,30℃培养28d后土壤芘降解率分别达到97%和99%.利用双加氧酶基因的同源序列引物nidAF/nidAR和nidBF/nidBR进行扩增,得出了该菌株编码双加氧酶大亚基和小亚基的基因片段,它们与已知降解芘的分枝杆菌的双加氧酶基因具有高度同源性.  相似文献   

18.
Summary Endo-polygalacturonase (endo-PG) production byAspergillus sp. CH-Y-1043 using untreated lemon peel as the sole carbon source was investigated. This strain was observed to produce more activity of endo-PG at 37°C than at 29°C. Untreated lemon peel proved to be a beeter substrate than citrus pectin for endo-PG production. Modification of the culture medium and lowering of the initial pH to 2.8 caused a 10-fold increase in the production of endo-PG activity using lemon peel.  相似文献   

19.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

20.
Actinomycetes were isolated from activated sludge acclimated to thiophene-2-carboxylic acid (T2C) or 5-methyl-thiophene-2-carboxylic acid (T5M2C). These isolates were apparently identical and were identified as strains ofRhodococcus. The strains could grow on T2C, T5M2C, or thiophene-2-acetic acid as sole sources of carbon and energy, but could not use thiophene, methyl thiophenes, several other substituted thiophenes, dibenzothiophene, dimethyl sulfide, or pyrrole-2-carboxylic acid. T2C was degraded quantitatively to sulfate, and its carbon was converted almost entirely to cell biomass and carbon dioxide. Growth yields indicated about 25% conversion of T2C-carbon to cell-carbon. Growth was not supported by thiosulfate or methionine, nor were these compounds oxidized.Rhodococcus strain TTD-1 grown on T2C oxidized both T2C and T5M2C with an apparent Km of 1.3×10–5 M. Sulfide was also oxidized by T2C-grown organisms. This is the first demonstration of an actinomycete capable of the complete degradation of thiophene derivatives and of their use by it as sole substrates for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号