首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synchronous G1 cells were given a priming dose of heat (45.5 degrees C for 15 min) and then heated and irradiated 6-120 h later. Compared to heat radiosensitization for cells irradiated 10 min after the priming heat dose (thermal enhancement ratio, TER of 2.6 for a 10-fold reduction in survival), heat radiosensitization 18-24 h after the priming heat dose was less (i.e., TER of 1.6 for radiation at 24 h compared with heat-radiation at 24 h). A thermotolerance ratio (TTR) at 24 h was calculated to be 2.6/1.6 = 1.6. TERs at 100-fold or 1000-fold reduction in survival and ratios of slopes of radiation survival curves also showed that the cells developed a similar amount of thermotolerance for heat radiosensitization at 18-24 h. Furthermore, since the TER for heat radiosensitization increased with heat killing either from the priming heat dose or the second heat dose in a similar manner for single or fractionated doses, the TER for nonthermotolerant and thermotolerant cells was the same when related to the heat damage (i.e., amount of killing from heat alone). When the radiation response of cells heated and irradiated 6-120 h after the priming heat dose was compared with the response of cells receiving radiation only, changes in TER as a function of time after the initial priming heat dose were shown to involve: recovery of heat damage interacting with the subsequent radiation dose, thermotolerance for heat radiosensitization, and redistribution of cells surviving the first heat dose into radioresistant phases of the cell cycle. In fact, redistribution resulted in a minimal TER at 72 h for heat-radiation compared with radiation alone, instead of at 24 h where maximal thermotolerance for heat killing was observed [P. K. Holahan and W. C. Dewey, Radiat. Res. 106, 111 (1986)]. These observations are discussed relative to clinical considerations and similar results reported from in vivo experiments.  相似文献   

2.
Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks.  相似文献   

3.
The effect of hyperthermia on radiation-induced carcinogenesis   总被引:1,自引:0,他引:1  
Ten groups of mice were exposed to either a single (30 Gy) or multiple (six fractions of 6 Gy) X-ray doses to the leg. Eight of these groups had the irradiated leg made hyperthermic for 45 min immediately following the X irradiation to temperatures of 37 to 43 degrees C. Eight control groups had their legs made hyperthermic with a single exposure or six exposures to heat as the only treatment. In mice exposed to radiation only, the postexposure subcutaneous temperature was 36.0 +/- 1.1 degrees C. Hyperthermia alone was not carcinogenic. At none of the hyperthermic temperatures was the incidence of tumors in the treated leg different from that induced by X rays alone. The incidence of tumors developing in anatomic sites other than the treated leg was decreased in mice where the leg was exposed to hyperthermia compared to mice where the leg was irradiated. A systemic effect of local hyperthermia is suggested to account for this observation. In mice given single X-ray doses and hyperthermia, temperatures of 37, 39, or 41 degrees C did not influence radiation damage as measured by the acute skin reactions. A hyperthermic temperature of 43 degrees C potentiated the acute radiation reaction (thermal enhancement factor 1.1). In the group subjected to hyperthermic temperatures of 37 or 39 degrees C and X rays given in six fractions, the skin reaction was no different from that of the group receiving X rays alone. Hyperthermic temperatures of 41 and 43 degrees C resulted in a thermal enhancement of 1.16 and 1.36 for the acute skin reactions. From Day 50 to Day 600 after treatment, the skin reactions showed regular fluctuations with a 150-day periodicity. Following a fractionated schedule of combined hyperthermia and X rays, late damage to the leg was less than that following X irradiation alone. Mice subjected to X rays and hyperthermic temperatures of 41 and 43 degrees C had a lower median survival time than the mice treated with hyperthermia alone. This effect was not associated with tumor incidence.  相似文献   

4.
Mouse fibroblast LM cells have been heated at 44 degrees C for different periods. Potassium content of the cells was measured at certain intervals during the postheating period at 37 degrees C for up to 24 hr. The level of K+ decreased gradually in time starting within some hours after the heat treatment. The rate of K+ loss as well as the ultimate level reached was heat-dose dependent. When the potassium content of the cell population was determined 16 hr after the heat treatment, a correlation was observed between the concentration of potassium and the level of cell survival. When X irradiation was applied immediately after hyperthermia, radiosensitization on the level of cell survival was obtained as expected, the extent being dependent on the severity of heat treatments. No added K+ loss was observed, however, when hyperthermia was combined with radiation. It is suggested that plasma membrane related functions are disturbed by the heat treatment. This points to membranes as possible candidates for primary targets in the case of cell inactivation by heat alone, and not with respect to the radiosensitization by hyperthermia.  相似文献   

5.
Asynchronously growing V79 cells were assayed for mutation induction following exposure to hyperthermia either immediately before or after being irradiated with 60Co gamma rays. Hyperthermia exposures consisted of either 43.5 degrees C for 30 min or 45 degrees C for 10 min. Each of these heat treatments resulted in a survival level of 42%. For all sequences of combined treatment with hyperthermia and radiation, cell killing by gamma rays was enhanced. Mutation induction by gamma rays was enhanced when heat preceded gamma irradiation, but no increase was observed when heat was given after gamma exposures. Treatment at 45 degrees C for 10 min gave a higher yield in mutants at all gamma doses studied compared to treatment at 43.5 degrees C for 30 min. When heat-treated cells were incubated for different periods before being exposed to gamma rays, thermal enhancement of radiation killing was lost after 24 h. In contrast, only 5-6 h incubation was needed for loss of mutation induction enhancement.  相似文献   

6.
RIF-1 tumors (100-300 mg) were exposed in vivo to heat treatment (41-48 degrees C) for 30 min and then assayed for either cell survival or tumor control. The tumors were heated either with normal perfusion or with temporary vascular occlusion (clamped for 30 min prior to and during the 30-min treatment). The physical technique of water bath heating ensured temperature uniformity in both the perfused and vascularly occluded tumors. Survival curves for tumor cells heated under both conditions had a shoulder and exponential regions. While the T0's were not statistically different in the two cases, cells from the tumors whose blood flow had been occluded showed an enhanced sensitivity to heat as evidenced by a reduction of the shoulder by 2.5 degrees C. A similar increase in sensitivity was measured with the tumor cure assay with the TCT50 decreasing from 47 degrees C for unclamped tumors to 45 degrees C for clamped tumors. The two assays are therefore in excellent agreement in assessing the effectiveness of heat treatment and the influence of vascular occlusion on the heat sensitivity of this tumor. Since the clonogenic assay was performed immediately after treatment, this agreement between assays indicates that direct cell kill by heat is the major factor in determining cure in this tumor.  相似文献   

7.
After sodium arsenite (100 microM) treatment, the synthesis of three major heat shock protein families (HSPs; Mr = 110,000, 87,000, and 70,000), as studied with one-dimensional gels, was enhanced twofold relative to that of unheated cells. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed as a 100,000-fold increase in survival from 10(-6) to 10(-1) after 4 hr at 43 degrees C, and as a thermotolerance ratio (TTR) of 2-3 at 10(-3) isosurvival for heating at 45.5 degrees C. Cycloheximide (CHM: 10 micrograms/ml) or puromycin (PUR: 100 micrograms/ml), which inhibited total protein synthesis and HSP synthesis by 95%, completely suppressed the development of thermotolerance when either drug was added after sodium arsenite treatment and removed prior to the subsequent heat treatment. Therefore, thermotolerance induced by arsenite treatment correlated with an increase in newly synthesized HSPs. However, with or without arsenite treatment, CHM or PUR added 2-6 hr before heating and left on during heating caused a 10,000-100,000-fold enhancement of survival when cells were heated at 43 degrees C for 4 hr, even though very little synthesis of heat shock proteins occurred. Moreover, these cells manifesting resistance to heating at 43 degrees C after CHM treatment were much different than those manifesting resistance to 43 degrees C after arsenite treatment. Arsenite-treated cells showed a great deal of thermotolerance (TTR of about 10) when they were heated at 45 degrees C after 5 hr of heating at 43 degrees C, compared with less thermotolerance (TTR of about 2) for the CHM-treated cells heated at 45 degrees C after 5 hr of heating at 43 degrees C. Therefore, there are two different phenomena. The first is thermotolerance after arsenite treatment (observed at 43 degrees C or 45.5 degrees C) that apparently requires synthesis of HSPs. The second is resistance to heat after CHM or PUR treatment before and during heating (observed at 43 degrees C with little resistance at 45.5 degrees C) that apparently does not require synthesis of HSPs. This phenomenon not requiring the synthesis of HSPs also was observed by the large increase in thermotolerance to 45 degrees C caused by heating at 43 degrees C, with or without CHM, after cells were incubated for 6 hr following arsenite pretreatment. For both phenomena, a model based on synthesis and redistribution of HSPs is presented.  相似文献   

8.
The interaction between hyperthermia and X irradiation was determined in cultured Reuber H35 hepatoma cells with different states of thermosensitivity. Incubation at 41 degrees C followed by 4-Gy X rays resulted after 2 hr in a stabilization of cell survival for heat or plus X rays, with a maximum synergism factor of 1.6. Thermotolerance did not develop during incubation at 41.7 or 42.5 degrees C. When heat treatment of cells was followed by irradiation, the synergism factor for thermal radiosensitization increased with both the amount of thermal cell killing and the amount of X-ray cell killing; the influence of thermal exposure on the synergism factor was greater than that of the X-ray dose. Cells were made thermotolerant either by incubation at 42.5 degrees C for 30 or 60 min followed by an interval at 37 degrees C, or by continuous incubation at 41 degrees C. In both cases thermotolerance was measured by incubation at 42.5 degrees C. No difference was observed between the maximum thermotolerance achieved with both methods. When cells were irradiated in addition to the second heat treatment, thermal radiosensitization was strongly reduced concomitant with the decreased sensitivity to killing by heat.  相似文献   

9.
Microtubule organizing centers (MTOC) in control, irradiated and heated C3H 10T1/2 mouse embryo cells and two radiation-transformed sublines, R1 and R25, were made visible by indirect immunofluorescence using antibody against tubulin. The MTOC were reformed by 5-min incubation in fresh medium after the microtubules were depolymerized with nocodazole. The R1 line had a different distribution of MTOC/cell than the parent 10T1/2 line or R25, which had similar distributions. After irradiation, multiple MTOC appeared in the normal and radiation-transformed cells irradiated to 10 Gy and incubated for 24 or 48 h. The multiple foci of microtubule reformation in the irradiated cells indicate that radiation damage is expressed in structural elements in the cytoplasm. After heat treatment of the three cell lines (43 degrees C for 93 min and 45 degrees C for 25 min), the MTOC were disrupted and many cells did not have visible organizing centers at 24 or 48 h, while others had a large number of small centers of microtubule reformation. The distribution of MTOC/cell seen in R25 cells after the treatment had similar patterns to those of the 10T1/2 line rather than to those of the other radiation-transformed line, R1. Thus, the radiation or heat response seen in the MTOC is not dependent upon cell transformation.  相似文献   

10.
An induction-type radiofrequency generator was used to heat thigh implants of the VX2 rabbit carcinoma. The tumor temperature could be easily raised to over 50 degrees C, while the temperature of normal adjacent muscle generally remained at about 43 degrees C. The marked hypovascularity of the tumor, as demonstrated angiographically, probably explains this disproportionate hyperthermic reaction to administered heat. Twenty-five untreated rabbits succumbed to their tumors after a mean interval of 38 days. Of 24 rabbits with tumors heated to between 48 and 50 degrees C for 30 to 45 min, 5 (21%) were permanently cured. Of 10 rabbits treated with 1000 R in a single dose, none were cured. Of 12 rabbits treated with 1000 R, followed after 3.5 hr with 30 min of heating to 48-49 degrees C, 11 were locally cured. Thus a synergistic effect between hyperthermia and irradiation was demonstrated.  相似文献   

11.
When Chinese hamster ovary (CHO) cells were exposed to 22 degrees C for 2 hr prior to 42.4 degrees C hyperthermia, neither the shoulder region of the survival curve nor the characteristic development of thermotolerance after 3-4 hr of heating were observed. Absolute cell survival after 4 hr at 42.4 degrees C was decreased by a factor of between 10 and 100 (depending on the rate of heating of nonprecooled controls). Conditioning at 30 degrees C for 2 hr, 26 degrees C for 2 hr, or 22 degrees C for 20 min followed by heating to 42.4 degrees C over 30 min did not result in sensitization. Prolonged (16 hr) conditioning at 30 degrees C, however, increased the cytotoxicity of immediate exposure to 41.4 or 45 degrees C with maximum sensitization to 45 degrees C occurring after 6 hr at 30 degrees C. Both 3- and 18-hr pretreatments at 30 degrees C similarly increased the cytotoxicity of 45-41.5 degrees C step-down heating (D0 = 28 min in precooled versus 40 min in nonprecooled cells).  相似文献   

12.
Thymocytes are one the most widely used cell models for the study of radiation-induced interphase death. This cell-type was chosen for the study of hyperthermic and radiation effects on two membrane-related processes implicated in the interphase death of cells: Na+-dependent 2-aminoisobutyric acid (AIB) transport and cyclic 3'-5' adenosine monophsophate formation. The response of AIB transport to heat is dose-dependent, but the biphasic thermal response curve (AIB uptake versus time) differs fom the sigmoidal radiation response curve. Heating thymocytes for 20-30 min at 43 degrees C stimulates AIB uptake. Additional heating at 43 degrees C, however, markedly reduces AIB uptake. Despite the immediate stimulating effect of heat (30 min at 43 degrees C), the thymocyte has already developed irrepairable impairments, as demonstrated by the fractionated heating experiments. The heat-induced impairment of AIB uptake is mainly on the Na+-dependent component of neutral amino-acid transport, affecting primarily the maximal rate of uptake, i.e. Vmax. Additional evidence for heat-induced plasma membrane damage is the alteration in cAMP levels. Heating thymocytes for 30 min or longer at 43 degrees C causes a massive rise in cAMP level within the cell. This differs from thymocytes exposed to radiation where no rise in cAMP is observed.  相似文献   

13.
Hyperthermia is a potent radio enhancer. Studies using hypothermia in combination with irradiation have given confusing results due to lack of uniformity in experimental design. This report shows that hypothermia might have potential significance in the treatment of malignant cells with both thermo- and radiotherapy. Reuber H35 hepatoma cells, clone KRC-7 were used to study the effect of hypothermia on cell kinetics and subsequent response to hyperthermia and/or X rays. Cells were incubated at 8.5 degrees C or between 25 and 37 degrees C for 24 hr prior to hyperthermia or irradiation. Hypothermia caused sensitization to both hyperthermia and X rays. Maximum sensitization was observed between 25 and 30 degrees C and no sensitization was found at 8.5 degrees C. At 25 degrees C maximum sensitization was achieved in approximately 24 hr, cell proliferation was almost completely blocked, and cells gradually accumulated in the G2 phase of the cell cycle. In contrast to the effect of hypothermia on either hyperthermia or X rays alone, thermal radiosensitization was decreased in hypothermically pretreated cells (24 hr at 25 degrees C) compared to control cells (37 degrees C). The expression of thermotolerance and the rate of development at 37 degrees C after an initial heating at 42.5 degrees C were not influenced after preincubation at 25 degrees C for 24 hr. The expression of thermotolerance for heat or heat plus X rays during incubation at 41 degrees C occurred in a significantly smaller number of cells after 24 hr preincubation at 25 degrees C. The enhanced thermo- and radiosensitivity in hypothermically treated cells disappeared in approximately 6 hr after return to 37 degrees C.  相似文献   

14.
To quantitatively relate heat killing and heat radiosensitization, asynchronous or G1 Chinese hamster ovary (CHO) cells at pH 7.1 or 6.75 were heated and/or X-irradiated 10 min later. Since no progression of G1 cells into S phase occurred during the heat and radiation treatments, cell cycle artifacts were minimized. However, results obtained for asynchronous and G1 cells were similar. Hyperthermic radiosensitization was expressed as the thermal enhancement factor (TEF), defined as the ratio of the D0 of the radiation survival curve to that of the D0 of the radiation survival curve for heat plus radiation. The TEF increased continuously with increased heat killing at 45.5 degrees C, and for a given amount of heat killing, the amount of heat radiosensitization was the same for both pH's. When cells were heated chronically at 42.4 degrees C at pH 7.4, the TEF increased initially to 2.0-2.5 and then returned to near 1.0 during continued heating as thermal tolerance developed for both heat killing and heat radiosensitization. However, the shoulder (Dq) of the radiation survival curve for heat plus radiation did not manifest thermal tolerance; i.e., it decreased continuously with increased heat killing, independent of temperature, pH, or the development of thermotolerance. These results suggest that heat killing and heat radiosensitization have a target(s) in common (TEF results), along with either a different target(s) or a difference in the manifestation of heat damage (Dq results). For clinical considerations, the interaction between heat and radiation was expressed as (1) the thermal enhancement ratio (TER), which is the dose of X rays alone divided by the dose of X rays combined with heat to obtain an isosurvival, e.g., 10(-4), and (2) the thermal gain factor (TGF), the ratio of the TER at pH 6.75 to the TER at pH 7.4. Since low pH reduced the rate of development of thermal tolerance during heating at low temperatures, low pH enhanced heat killing more at 42-42.5 degrees C than at 45.5 degrees C where thermal tolerance did not develop. Therefore, the increase in the TGF after chronic heating at 42-42.5 degrees C was greater than after acute heating at 45.5 degrees C, due primarily to the increase in heat killing causing an even greater increase in heat radiosensitization. These findings agree with animal experiments suggesting that in the clinic, a therapeutic gain for tumor cells at low pH may be greater for temperatures of 42-42.5 degrees C than of 45.5 degrees C.  相似文献   

15.
Survival after H2O2 exposure or heat shock of asynchronous Chinese hamster ovary cells (HA-1) was assayed following pretreatment with mildly toxic doses of either H2O2 or hyperthermia. H2O2 cytotoxicity at 37 degrees C, expressed as a function of mM H2O2 was found to be dependent on cell density at the time of treatment. The density dependence reflected the ability of cells to reduce the effectiveness of H2O2 as a cytotoxic agent. When the survival data were plotted as a function of mumoles H2O2/cell at the beginning of the treatment, survival was independent of cell density. Cells pretreated with 0.1 mM (3-5 mumoles/cell X 10(-7)) H2O2 for 1 hr at 37 degrees C (30-50% survival) became resistant to a subsequent H2O2 treatment 16-36 hr after pretreatment [dose modifying factor (DMF) at 1% isosurvival = 4-6]. Their resistance to 43 degrees C heating, however, was only slightly increased over controls 16-36 hr following pretreatment (DMF at 1% isosurvival = 1.2). During this same interval, the synthesis of protein migrating in the 70 kD region of a one-dimensional SDS-polyacrylamide gel was enhanced twofold in the H2O2-pretreated cells. When the cells were heated for 15 min at 45 degrees C (40-60% survival), the survivors became extremely resistant to 43 degrees C heating and somewhat resistant to H2O2 (DMF at 1% isosurvival = 2). The heat-induced resistance to heat developed much more rapidly (reached a maximum between 6 and 13 hr) following pretreatment than the heat-induced resistance to H2O2 (16-36 hr). The enhanced synthesis of 70 kD protein after heat shock was greater in magnitude and occurred more rapidly following preheating than following H2O2 pretreatment. The cells that became resistant to H2O2 by either pretreatment (H2O2 or heat shock) also increased their ability to reduce the H2O2 cytotoxicity from the treatment medium beyond that of the untreated HA-1 cells. This may be one of the mechanisms involved in the increased resistance and a common adaptive mechanism induced by both stresses. These data indicate that mammalian cells develop resistance to H2O2 following mild pretreatment with H2O2 or heat shock. The cross-resistance induced by H2O2 and heat shock reinforce the hypothesis that some overlap in mechanisms exist between the cellular responses to these two stresses. However, the failure of H2O2 pretreatment to induce much resistance to heat indicates that there are also differences in the actions of the two agents.  相似文献   

16.
Cultured murine mammary carcinoma cells M8013 could be made thermotolerant by a priming heat treatment, 30 min at 43 degrees C, applied 5 h prior to subsequent heat treatment. The sensitivity of non-tolerant and thermotolerant cells to either radiation or heat combined with radiation was investigated. Analysis of survival curves with respect to D0 and N showed that thermotolerance had no influence on the radiation sensitivity of the cells. Thermal enhancement of radiation effects (in combined heat/irradiation treatments) was however reduced as a result of thermotolerance. When thermal enhancement ratios were (D0) plotted as a function of the cell killing effects of heat treatment alone, thermotolerance did not seem to have any influence. This latter observation suggests that thermotolerance modifies the effectiveness of the heat treatment for heat-induced cell lethality and radiosensitization equally. Comparison of our in vitro results with several in vivo data on normal tissues suggest that the reduction in 'effective' treatment temperature which has been observed in the in vivo studies as a result of thermotolerance may be explained by equal modification of the effects of heat by thermotolerance both for its direct effects and the radiosensitization.  相似文献   

17.
Previous reports have suggested that the potentiation of cellular radiation sensitivity by hyperthermia may be due to its inhibition of the repair of single-strand breaks in DNA. Such inhibition could result in increased numbers of unrejoined breaks at long times following irradiation, lesions that are presumed to be lethal to the cell. As a test of this hypothesis, the amounts of residual strand-break damage in cells following combined hyperthermia and ionizing radiation were measured. The results show that hyperthermia does significantly enhance the relative number of unrejoined strand breaks as measured by the technique of alkaline elution and that the degree of enhancement is dependent on both the temperature and duration of the hyperthermia treatment. For example, compared to unheated cells, the proportion of unrejoined breaks measured 8 hr after irradiation was increased by a factor of 1.5 in cells that were treated for 30 min at 43 degrees C, by a factor of 6 for cells treated for 30 min at 45 degrees C, and by a factor of 4 for cells treated at 43 degrees C for 2 hr. In experiments in which the sequence of heat and irradiation were varied, a high degree of correlation was observed between the resulting level of cell killing and the relative numbers of unrejoined strand breaks. The greatest effects on both of these parameters were observed in those protocols in which the irradiation was delivered either during, just before, or just after the heat treatment.  相似文献   

18.
Evidence is presented for the interaction of X irradiation, slightly toxic levels of chloroquine, and mild hyperthermia in the inactivation of colony-forming ability in asynchronous HeLa cells. A three-way interaction was observed which resulted in the potentiation of radiation-induced lethality. There was little evidence of toxicity in unirradiated cells incubated for 3 h with 0.1 mM chloroquine at either 37 or 41 degrees C. The radiopotentiation factor, which is similar to the dose modification factor, was determined from dose-response curves by relating the reciprocal of the slope (D0) of the reference survival curve to that of the survival curve of cells receiving the combined postirradiation treatment with chloroquine and mild hyperthermia. Radiopotentiation factors larger than 1.7 were obtained irrespective of whether the reference D0's were obtained from survival curves for cells irradiated at 37 degrees C without drug or from cells receiving postirradiation treatment with heat or drug only.  相似文献   

19.
DNA repair has been investigated, estimated by unscheduled DNA synthesis (UDS) and the cellular NAD+ pool, after exposing human mononuclear leukocytes to hyperthermia and gamma radiation separately and in combination. It was found that gamma radiation induced a decline in UDS with increasing temperature through the temperature region studied (37-45 degrees C). At 42.5 degrees C the gamma-ray-induced UDS was reduced to about 70% of that at 37 degrees C. Following gamma-ray damage the NAD+ pool dropped to about 20% of control values. Without hyperthermic treatment the cells completely recovered to the original level within 5 hr. Moderate hyperthermia (42.5 degrees C for 45 min) followed by gamma-ray damage altered the kinetics so that even after 8 hr the NAD+ pool had recovered to only 70% of the original level. After heat treatment at 44 degrees C for 45 min prior to gamma radiation the cells did not recover at all, presumably because of the cytotoxic effects from the combined treatment.  相似文献   

20.
The modifying effects of m-aminobenzamide (m-ABA), an inhibitor of poly(ADP-ribose) synthesis, on 42 degrees C hyperthermia- and/or radiation-induced cell killing were examined in Chinese hamster V-79 cells. When cells were exposed to 42 degrees C hyperthermia in combination with m-ABA (10 mM), cell survival decreased compared with that for 42 degrees C hyperthermia alone. Thermosensitizing effects of m-ABA changed with treatments in a decreasing order of during and after heating greater than during heating greater than after heating. Treatments with m-ABA during and/or after X irradiation enhanced radiation-induced cell killing. When cells were exposed to combined treatment with X irradiation, 42 degrees C hyperthermia (60 min), and m-ABA (24 hr), cell survival decreased markedly compared with that for X irradiation alone. However, with both X----42 degrees C and X----42 degrees C----m-ABA, the enhancement ratios (ER), designated as D0 ratio, were similar. These results suggest that the mechanisms of radiosensitization by m-ABA may be similar to those of 42 degrees C hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号