首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当低浓度的Ca~(++)加入到血小板溶解液时(Ca~(++)/EGTA=0.56,游离Ca~(++)=1.22×10~(-7)mol/L),立即形成白色沉淀。这种沉淀经SDS-聚丙烯酰胺凝胶电泳鉴定为肌动蛋白、肌球蛋白和某些未知蛋白的复合物。沉淀的形成与钙的浓度有关。当Ca~(++)浓度从9.94×10~(-9)mol/L逐渐上升至1.22×10~(-7)mol/L时,溶液的浊度也逐步上升。当血小板溶解液事先与三氟拉嗪或氯丙嗪(50μmol/L)保温,然后再加入Ca~(++)时,白色沉淀同样形成,浊度与Ca~(++)浓度的关系曲线也保持不变。在游离Ga~(++)浓度为2.2×10~(-8)mol/L时,血小板溶解液生成沉淀的时间过程也不受钙调蛋白抑制剂的影响。药物对沉淀的Mg~(++)-ATPase活力有轻微抑制作用。这些结果表明,在休止血小板细胞中(游离Ca~(++)浓度10~(-7)mol/L),大部分肌动蛋白已与肌球蛋白和其他一些未知蛋白形成复合物。在复合物中肌动蛋白以F-型存在。  相似文献   

2.
质膜转运蛋白及其与植物耐盐性关系研究进展   总被引:13,自引:0,他引:13  
植物细胞质膜有两种主要功能:⑴溶质运输(进出细胞),溶质运输主要由转运蛋白完成;⑵信号传导,即接收信号并引发细胞生理生化响应。盐分过多对植物的伤害主要是离子毒害。质膜转运蛋白活性环境变化能做现迅速响应。本文简要叙述了植物细胞质膜转运蛋白类型、分子特性、生理功能及其活性调节。介绍了植物细胞质膜H^+-ATPase、质膜氧化还原系统、质膜离子载体和离子通道对盐胁迫的响应及其这些响应与植物耐盐性之间的关  相似文献   

3.
质膜转运蛋白及其与植物耐盐性关系研究进展   总被引:1,自引:0,他引:1  
王宝山  邹琦 《植物学报》2000,17(1):17-26
植物细胞质膜有两种主要功能:(1)溶质运输(进出细胞),溶质运输主要由转运蛋白完成;(2)信号传导,即接收信号并引发细胞生理生化响应。盐分过多对植物的伤害主要是离子毒害。质膜转运蛋白活性对环境变化能做出迅速响应。本文简要叙述了植物细胞质膜转运蛋白类型、分子特性、生理功能及其活性调节。介绍了植物细胞质膜H+_ATPase、质膜氧化还原系统、质膜离子载体和离子通道对盐胁迫的响应及其这些响应与植物耐盐性之间的关系。  相似文献   

4.
早在1942年,有人就提出植物叶子中的蛋白质可以作为人类食物的设想。此后,一些从植物叶子中分离蛋白质的简单技术逐步发展起来,分离出来的蛋白质是一种绿色的凝结物。最近,有人发明了一种在苜蓿叶提取液中将蛋白质部分和绿色聚集体分离开来的方法,得到的是白色的叶蛋白,不但含有氨基酸,而且具有某些特殊的功能,可用作食品配料。这种白色蛋白质含有88.6%的粗蛋白。  相似文献   

5.
植物细胞质雄性不育分子机理研究进展   总被引:1,自引:0,他引:1  
本文从线粒体基因组、线粒体基因、线粒体转录 RNA、 线粒体蛋白、转基因植物以及花粉败育机理六个方面详细介绍了植物细胞质雄性不育分子生物学研究的技术和方法。综述了植物细胞质雄性不育分子机理研究的进展,并对植物细胞质雄性不育分子机理的前景作了展望。  相似文献   

6.
植物细胞质雄性不育分子机理研究进展   总被引:15,自引:0,他引:15  
本文从线粒体基因组、线粒体基因、线粒体转录RNA、线粒体蛋白、转基因植物以及花粉败育机理六个方面详细介绍了植物细胞质雄性不育分子生物学研究的技术和方法。综述了植物细胞质雄性不育分子机理研究的进展 ,并对植物细胞质雄性不育分子机理的前景作了展望。  相似文献   

7.
在伸长盛期的甘蔗+1叶(最高可见肥厚带叶)的叶绿体、线粒体和细胞溶质中能普遍测出Mg~(++)-ATP酶和Ca~(++)-ATP酶活性。早熟高糖半产品种细胞溶质中的Mg~(++)-ATP酶和Ca~(++)-ATP酶活性都比较高。  相似文献   

8.
应用酶解技术分离出桔梗科四种植物(桔梗、轮叶沙参、杏叶沙参和羊乳)的胚囊。对胚囊的形态结构和贮藏物质的变化作了观察比较。它们的成熟胚囊结构基本相同,均由卵细胞、一对助细胞和中央细胞组成。反足器退化较早。但形态、大小等有一定差异。桔梗胚囊狭长,细胞质浓密;沙参(包括轮叶沙参与杏叶沙参)的胚囊也较狭长,细胞质不如前者浓密;羊乳胚囊非常宽大,而细胞质相当稀薄,与前三种植物的差异较大。它们均含有贮藏物质,显微化学反应表明主要系多糖物质。多糖颗粒的形状、大小各有特点,在胚囊受精前后的消长变化也有不同。其中羊乳与其它三种植物之间的差别较大。  相似文献   

9.
为阐明F-肌动蛋白在优雅蝈螽Gampsocleis gratiosa Brunner von Wattenwyl精子形成过程中的动态变化,本研究利用微分干涉相衬技术和免疫荧光技术首次对优雅蝈螽精子形成过程中的F-肌动蛋白进行了细胞定位,利用透射电镜技术从超微水平观察了优雅蝈螽精子顶体复合体的结构.结果显示:精子形成早期,F-肌动蛋白富集于亚顶体区域,形态由“球状”转变为“棒锥状”;精子形成中期,F-肌动蛋白呈“倒Y型”分布于亚顶体区域和细胞核前端两侧;精子形成后期,亚顶体区域的F-肌动蛋白解聚消失,F-肌动蛋白呈“箭头状”,仅分布于顶体复合体扩张的两翼中.F-肌动蛋白动态变化伴随着细胞核和精子头部的形态改变,F-肌动蛋白的动态装配在精子顶体复合体形态构建和细胞核的形变中起着重要的作用.本研究还发现未成熟的精子尾部有一些富含F-肌动蛋白的细胞质微滴,与精子形成过程中多余细胞质和细胞器的外排有关.F-肌动蛋白的动态变化研究为进一步阐明细胞骨架蛋白在昆虫精子形成过程中的功能和作用机制奠定了基础.  相似文献   

10.
周娜  常岩林  王莉 《昆虫学报》2012,55(4):395-402
为阐明F-肌动蛋白在优雅蝈螽Gampsocleis gratiosa Brunner von Wattenwyl精子形成过程中的动态变化, 本研究利用微分干涉相衬技术和免疫荧光技术首次对优雅蝈螽精子形成过程中的F-肌动蛋白进行了细胞定位, 利用透射电镜技术从超微水平观察了优雅蝈螽精子顶体复合体的结构。结果显示: 精子形成早期, F-肌动蛋白富集于亚顶体区域, 形态由“球状”转变为“棒锥状”; 精子形成中期, F-肌动蛋白呈“倒Y型”分布于亚顶体区域和细胞核前端两侧; 精子形成后期, 亚顶体区域的F 肌动蛋白解聚消失, F-肌动蛋白呈“箭头状”, 仅分布于顶体复合体扩张的两翼中。F-肌动蛋白动态变化伴随着细胞核和精子头部的形态改变, F-肌动蛋白的动态装配在精子顶体复合体形态构建和细胞核的形变中起着重要的作用。本研究还发现未成熟的精子尾部有一些富含F-肌动蛋白的细胞质微滴, 与精子形成过程中多余细胞质和细胞器的外排有关。F-肌动蛋白的动态变化研究为进一步阐明细胞骨架蛋白在昆虫精子形成过程中的功能和作用机制奠定了基础。  相似文献   

11.
柠条Ca~(2+)-ATPase的性质及钙调素含量与抗旱性的关系   总被引:2,自引:0,他引:2  
分离纯化旱生植物柠条的叶细胞质膜,测定其Ca2+-ATPase的最适反应pH、最适反应温度、底物ATP和激活剂Ca2+对酶活性的影响,并与中生植物小麦叶细胞质膜Ca2+-ATPase的性质进行比较。实验表明柠条叶细胞质膜Ca2+-ATPase的最适反应pH为7.5,最适反应温度为55℃,酶对ATP的Hill系数为0.94,符合米氏动力学类型,对Ca2+的Hill系数为0.35,具有负协同作用。还测定了柠条和小麦叶片中及叶细胞质膜结合的钙调素含量,发现钙调素含量与植物的抗旱性成正相关。  相似文献   

12.
影响农杆菌介导遗传转化的植物因子研究进展   总被引:6,自引:1,他引:5  
农杆菌介导法是植物遗传转化中最常用的一种方法.越来越多的研究表明,植物遗传因子是决定农杆菌遗传转化效率的重要因素,它们至少影响了转化过程的如下5个方面:1)受伤植物释放的酚类物质和糖分子等介导农杆菌的趋化运动和毒性基因vir的诱导表达;2)农杆菌吸附到植物表面;3)T-DNA和毒性蛋白通过由VirB和virD4蛋白组成的Ⅳ型分泌系统从细菌转移到植物细胞质;4)T-复合体利用细胞质ACTIN骨架和输入蛋白进行核定位和核输入;5)T-DNA利用植物的修复装置整合进宿主基因组.就以上5个方面涉及的植物因子研究进展予以综述.  相似文献   

13.
多种有机和无机离子作为重要的营养物质、渗透物质、辅酶和信号分子, 参与植物生殖、生长发育和逆境反应等多种生物学过程。离子通道是离子跨质膜和内膜运动的重要渠道和动态调控因子, 直接影响和调控细胞内离子浓度及亚细胞分布的动态变化。目前, 植物尤其是模式植物拟南芥(Arabidopsis thaliana)的多个离子通道家族被先后鉴定出来, 其中部分离子通道蛋白定位在细胞质膜上, 其基本生物学功能, 诸如蛋白结构、离子选择性和通透性、门控特点、活性调控机理以及不同离子通道之间的协同关系等均取得重要进展。该文概要介绍近年来植物细胞质膜离子通道方面的研究进展。  相似文献   

14.
胞间连丝作为一种细胞质结构将相邻的细胞连系起来而形成植物的共质体。胞间连丝通过调控许多离子和分子的共质体运输而广泛地参与植物的生命活动。胞间连丝的主要构成部分是细胞质膜、连丝小管、以及位于二之间的环层细胞质。这三都很容易在电子显微镜下观察到。细胞骨架的成分(肌动蛋白和肌球蛋白)起到稳定胞间连丝的作用。同时,钙结合蛋白可能具有调节间连丝功能的作用。在胞间连丝里,环层细胞质为大多数溶质提供共质体运输的通道,而有些 共质体运输则可能是通过连丝小管的内腔、连丝小管的壳层、甚或是细胞质膜来实现的。共质体可以细分为数个区块,它们各自允许不同大小的分子(从低于1000到高于10000道尔顿)通过。从发生上看,胞间连丝可以是初生的,也可以是次生的。前是伴随着新细胞壁的形成则产生的,而后则是在已有的细胞壁上产生的。胞间连丝的动态性质还表现在它们的频率是处于变化之中,这是由于组织或植物整体的发育和生理状态决定的。虽然共质体运输的基本形式是扩散,但胞间连丝对于某些离子和分子却是选择性的。在病毒感染细胞时,病毒的移动蛋白作用于胞间连丝的受体蛋白,结果,胞间连丝被显地扩张(其机理尚不清楚)。于是,病毒的移动蛋白连同与之结合在一起的病毒基因组进入毗邻的健康细胞。一些植物源性的蛋白质也能够通过胞间连丝来运输;推测其方式类似于病毒的移动蛋白。有些植物蛋白质本身就是信号分子,它们调节分化和其他活动。与此相反,还有一些植物蛋白质的共质体运输并不是通过特异的方式来实现的。  相似文献   

15.
以小麦T型细胞质雄性不育系为材料,利用双向电泳技术,对苗期、分蘖期、拔节期和孕穗期叶片和花粉母细胞减数分裂期、单核小孢子期、二—三核小孢子期蛋白质变化作了分析。在细胞质雄性不育系小麦拔节期、孕穗期叶片中,有一个33KD/PI6.3蛋白组分存在,保持系中没有发现这个蛋白组分。在花粉败育的关键时期二—三核小孢子期,小麦细胞质雄性不育系有53KD/PI5.5、50KD/PI5.7、48KD/PI5.6和20KD/PI7.5四种蛋白组分存在,而保持系中也没有存在。小麦细胞质雄性不育系叶片和小孢子发育过程中存在的这五种特异蛋白可能参与育性调控,与细胞质雄性不育特性的形成有关。  相似文献   

16.
正荷花为多年生草本挺水植物,是最古老的双子叶植物之一,但又有单子叶植物的某些特征。其叶有两种类型:浮叶和立叶。植株有20厘米左右的小型荷花,也有两米多高的大型品种。花有红色、紫红、粉红、白色、淡黄色和杂色等色系,但缺少紫色、蓝色和深黄等花色品种。一株完整的荷花成熟个体应该由根、茎、叶、花、果实和种子等6大植物器官构成。根荷花的根为须根状,较长,由荷花地下茎的节处部位长出,也可由种子萌发的幼苗叶柄着生部位长出,通常白色,也有带红色者,主要起固定植株和吸收养分作用。  相似文献   

17.
无色花色素还原酶(LAR)是植物类黄酮合成途径中一个关键酶。本研究根据大叶蛇葡萄转录组测序得到了无色花色素还原酶(LAR)基因序列,通过RT-PCR技术克隆得到LAR基因cDNA全长,并对该序列进行生物信息学分析。结果表明:大叶蛇葡萄LAR基因cDNA全长为1 267 bp,包含一个长度为1 170 bp的开放阅读框,编码389个氨基酸,理论蛋白分子质量为42.38 kD,等电点为7.73。氨基酸多序列比对发现,该序列与同科植物葡萄等具有较高的同源性。生物信息学分析表明LAR为亲水性蛋白,不含信号肽,很可能定位于细胞质。本研究为进一步研究LAR基因的功能,阐明该基因在大叶蛇葡萄类黄酮合成路径中的作用提供了新的线索。  相似文献   

18.
绝大部分的叶绿体蛋白组份是在细胞器外合成后输入叶绿体的。它们是以含氨基端延长肽的前体形式合成的。近来的实验已证明,外源多肽与这些氨基端延长肽融合后也能被输入到叶绿体内,从而为利用遗传操作的方法改良重要的经济植物提供了令人兴奋的可能途径。 和线粒体一样,叶绿体也含有自己的遗传信息并足以进行蛋白质合成,但大多数的叶绿体蛋白是核DNA编码并在叶绿体外的细胞质核糖体上合成的(见参考文献1的综述)。实际上,叶细胞质蛋白合成的主要产物是叶绿体蛋白质的两种多肽组份即核糖-1,5-二磷酸羧化酶(rbe S)的小亚基和光捕获叶绿素a/b蛋白复合体(CAB)的组成多肽。在本篇综述中,我们将讨论目前已知的关于细胞质合成多肽输入叶绿体的机理以及最近一些证明外源多肽输入叶绿体的实验;另外还将讨论这种使外源多肽输入叶绿体能力的可能应用。  相似文献   

19.
本文探讨膜毒素对鼠肝线粒体Ca~(++)传递和Ca~(++)结合亲和力的影响。当膜毒素的浓度为7.14毫微克分子/毫克线粒体蛋白时,处理过的线粒体传递Ca~(++)能力下降至原来一半左右。本实验做Ca~(++)结合膜毒素处理线粒体的Scatchard图呈直线(K_d=48.2μM,结合Ca~(++)数目N=341毫微克分子/毫克线粒体蛋白)。就是说,膜毒素抑制线粒体高亲和力Ca~(++)结合部位,而不影响低亲和力Ca~(++)结合部位。我们认为膜毒素作用位点在于线粒体高亲和力Ca~(++)结合部位。  相似文献   

20.
许多病原菌能够通过分泌不同的效应蛋白以调控植物的防御以及胞内进程,从而助其有效入侵植物组织。稻瘟病菌的效应蛋白根据其不同的定位特点,被分为细胞质效应蛋白与质外体效应蛋白两类。在侵染过程中,细胞内的侵染菌丝被源于宿主植物的交界面菌丝膜(extrainvasive hyphal membrane, EIHM)包围,由EIHM与侵染菌丝细胞壁形成的质外体隔间是效应蛋白分泌的"必经通道"。此外,在稻瘟病菌侵染过程中会形成一个高度局部化的结构—活体营养表面复合体(biotrophic interfacial complex, BIC),它能够聚集由侵染菌丝分泌的细胞质效应蛋白。该文综述了稻瘟病菌效应蛋白的功能及其迁移过程,介绍了BIC的两个重要的形成阶段,阐明了不同效应蛋白的定位特点以及胞间转运的动态过程,揭示了效应蛋白分泌、转运至水稻细胞质以及在水稻细胞之间移动的分子机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号