首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragment complementation has been used to delineate the essential recognition elements for stable folding in Src homology 2 (SH2) domains by using NMR spectroscopy, alanine scanning, and surface plasmon resonance. The unfolded 9-kD and 5-kD peptide fragments formed by limited proteolytic digestion of the N-terminal SH2 domain from the p85alpha subunit of phosphatidylinositol 3'-kinase fold into an active native-like structure on interaction with one another. The corresponding 5-kD fragment of the homologous Src protein, however, was not capable of structurally complementing the p85 9-kD fragment, indicating that fragment complementation among these SH2 domains is sensitive to the sequence differences between the Src and p85 domains. Partial complementation and folding activity could be recovered with hybrid sequences of these SH2 domains. Complete alanine scanning of the 5-kD p85 fragment was used to identify the sequence recognition elements required for complex formation. The alanine substitutions in the p85 5-kD fragment that abolished binding affinity with the cognate 9-kD fragment correlate well with highly conserved residues among SH2 domains that are either integrally involved in core packing or found at the interface between fragments. Surprisingly, however, mutation of a nonconserved surface-exposed aspartic acid to alanine was found to have a significant effect on complementation. A single additional mutation of arginine to aspartic acid allowed for recovery of native structure and increased the thermal stability of the designed Src-p85 chimera by 18 degrees C. This modification appears to relieve an unfavorable surface electrostatic interaction, demonstrating the importance of surface charge interactions in protein stability.  相似文献   

2.
Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed.  相似文献   

3.
The study of complementary protein fragments is thought to be generally useful to identify early folding intermediates. A prerequisite for these studies is the reconstitution of the native-like structure by fragment complementation. Structural analysis of the complementation of the domain-sized proteolytic fragments of E. coli thioredoxin, using a combination of H-exchange and 2D NMR experiments as a fingerprint technique, provide evidence for the extensive reconstitution of a native β-sheet, with local conformational adjustments near the cleavage site. Remarkably, the antiparallel β-strand between the fragments shows a native-like protection of the amide protons to solvent exchange. Our results indicate that these fragments can be useful to study the early events in the still little understood formation of β-sheets. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A.  相似文献   

5.
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the alpha and beta subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH(2)-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end-directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker.  相似文献   

6.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

7.
8.
Phosphatidylinositol (PI) 3-kinase is a heterodimer consisting of an 85-kDa subunit (p85) and 110-kDa subunit (p110). The 85-kDa noncatalytic subunit, which contains two Src homology 2 (SH2) domains, one SH3 domain, and a domain homologous to the carboxy terminus of the breakpoint cluster region gene product, is known to mediate the association of the PI 3-kinase complex with activated growth factor receptors. We previously demonstrated that the C-terminal SH2 domain of p85 is responsible for the interaction of PI 3-kinase with phosphorylated platelet-derived growth factor receptor. To define the region in p85 that directs the complex formation with the PI 3-kinase catalytic subunit, a series of truncated p85 mutants was analyzed for association with p110 in vivo. We found that a fragment of p85 containing the region between the two SH2 domains was sufficient to promote the interaction with p110 in vivo. The complex between the fragment of p85 and p110 had PI 3-kinase activity that was comparable in magnitude to the activity of p110 associated with full-length p85. The binding with p110 was abolished when this domain in p85 was disrupted. These results identify a novel structural and functional element that is responsible for localizing the catalytic subunit of PI 3-kinase.  相似文献   

9.
CIN85 is a multifunctional protein that plays key roles in endocytic down-regulation of receptor tyrosine kinases, apoptosis, cell adhesion, and cytoskeleton rearrangement. Its three SH3 domains (CIN85A, CIN85B, and CIN85C) allow it to recruit multiple binding partners. To understand the manifold interactions of CIN85, we present a detailed high-resolution solution structural study of CIN85A and CIN85B binding to proline-arginine peptides derived from the cognate ligands Cbl and Cbl-b. We report the structure of CIN85B and provide evidence that both CIN85A and CIN85B, in isolation or when linked, form heterodimeric complexes with the peptides. We report unusual curved chemical shift changes for several residues of CIN85A when titrated with Cbl-b peptide, indicating the existence of more than one complex form. Here we demonstrate that CIN85A and CIN85B use different mechanisms for peptide binding.  相似文献   

10.
11.
I Sekler  M Weiss    U Pick 《Plant physiology》1994,105(4):1125-1132
Trypsin treatment of purified H(+)-ATPase from plasma membranes of the extreme acidophilic alga Dunaliella acidophila enhances ATP hydrolysis and H+ pumping activities. The activation is associated with an alkaline pH shift, an increase in Vmax, and a decrease in Km(ATP). The activation is correlated with cleavage of the 100-kD ATPase polypeptide to a fragment of approximately 85 kD and the appearance of three minor hydrophobic fragments of 7 to 8 kD, which remain associated with the major 85-kD polypeptide. The N-terminal sequence of the small fragments has partial homology to residues 713 to 741 of Arabidopsis thaliana plasma membrane H(+)-ATPases. Incubation of cells with 32P-labeled orthophosphate (32Pi) results in incorporation of 32P into the ATPase 100-kD polypeptide. Trypsin treatment of the 32Pi-labeled ATPase leads to complete elimination of label from the approximately 85-kD polypeptide. Cleavage of the phosphorylated enzyme with endoproteinase Glu-C (V-8) yields a phosphorylated 12-kD fragment. Peptide mapping comparison between the 100-kD and the trypsinized 85-kD polypeptides shows that the 12-kD fragment is derived from the trypsin-cleaved part of the enzyme. The N-terminal sequence of the 12-kD fragment closely resembles a C-terminal stretch of an ATPase from another Dunaliella species. It is suggested that trypsin activation of the D. acidophila plasma membrane H(+)-ATPase results from elimination of an autoinhibitory domain at the C-terminal end of the enzyme that carries a vicinal phosphorylation site.  相似文献   

12.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

13.
Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  相似文献   

14.
The introduction of copper chelates into peptide mimetics creates the Src SH2 binding ligands and paramagnetic complexes suitable for EPR studies of peptide protein interactions. The dipicolinic acid was attached to SH2 domain targeting fragments by two different linkers.  相似文献   

15.
Weber T  Schaffhausen B  Liu Y  Günther UL 《Biochemistry》2000,39(51):15860-15869
The N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K) has a higher affinity for a peptide with two phosphotyrosines than for the same peptide with only one. This unexpected result was not observed for the C-terminal SH2 from the same protein. NMR structural analysis has been used to understand the behavior of the N-SH2. The structure of the free SH2 domain has been compared to that of the SH2 complexed with a doubly phosphorylated peptide derived from polyomavirus middle T antigen (MT). The structure of the free SH2 domain shows some differences from previous NMR and X-ray structures. In the N-SH2 complexed with a doubly phosphorylated peptide, a second site for phosphotyrosine interaction has been identified. Further, line shapes of NMR signals showed that the SH2 protein-ligand complex is subject to temperature-dependent conformational mobility. Conformational mobility is also supported by the spectra of the ligand peptide. A binding model which accounts for these results is developed.  相似文献   

16.
Bimolecular fluorescence complementation (BiFC) analysis enables visualization of the subcellular locations of protein interactions in living cells. Using fragments of different fluorescent proteins, we investigated the temporal resolution and the quantitative accuracy of BiFC analysis. We determined the kinetics of BiFC complex formation in response to the rapamycin-inducible interaction between the FK506 binding protein (FKBP) and the FKBP-rapamycin binding domain (FRB). Fragments of yellow fluorescent protein fused to FKBP and FRB produced detectable BiFC complex fluorescence 10 min after the addition of rapamycin and a 10-fold increase in the mean fluorescence intensity in 8 h. The N-terminal fragment of the Venus fluorescent protein fused to FKBP produced constitutive BiFC complexes with several C-terminal fragments fused to FRB. A chimeric N-terminal fragment containing residues from Venus and yellow fluorescent protein produced either constitutive or inducible BiFC complexes depending on the temperature at which the cells were cultured. The concentrations of inducers required for half-maximal induction of BiFC complex formation by all fluorescent protein fragments tested were consistent with the affinities of the inducers for unmodified FKBP and FRB. Treatment with the FK506 inhibitor of FKBP-FRB interaction prevented the formation of BiFC complexes by FKBP and FRB fusions, but did not disrupt existing BiFC complexes. Proteins synthesized before the addition of rapamycin formed BiFC complexes with the same efficiency as did newly synthesized proteins. Inhibitors of protein synthesis attenuated BiFC complex formation independent of their effects on fusion protein synthesis. The kinetics at which they inhibited BiFC complex formation suggests that they prevented association of the fluorescent protein fragments, but not the slow maturation of BiFC complex fluorescence. Agents that induce the unfolded protein response also reduced formation of BiFC complexes. The effects of these agents were suppressed by cellular adaptation to protein folding stress. In summary, BiFC analysis enables detection of protein interactions within minutes after complex formation in living cells, but does not allow detection of complex dissociation. Conditional BiFC complex formation depends on the folding efficiencies of fluorescent protein fragments and can be affected by the cellular protein folding environment.  相似文献   

17.
We have investigated the functional role of the SH2 domain of the 85-kDa subunit (p85) of the phosphatidylinositol 3-kinase in the insulin signal transduction pathway. Microinjection of a bacterial fusion protein containing the N-terminal SH2 domain of p85 inhibited insulin- and other growth factor-induced DNA synthesis by 90% and c-fos protein expression by 80% in insulin-responsive rat fibroblasts. The specificity of the fusion protein was examined by in vitro precipitation experiments, which showed that the SH2 domain of p85 can independently associate with both insulin receptor substrate 1 and the insulin receptor itself in the absence of detectable binding to other phosphoproteins. The microinjection results were confirmed through the use of an affinity-purified antibody directed against p85, which gave the same phenotype. Additional studies were carried out in another cell line expressing mutant insulin receptors which lack the cytoplasmic tyrosine residues with which p85 interacts. Microinjection of the SH2 domain fusion protein also inhibited insulin signaling in these cells, suggesting that association of p85 with insulin receptor substrate 1 is a key element in insulin-mediated cell cycle progression. In addition, coinjection of purified p21ras protein with the p85 fusion protein or the antibody restored DNA synthesis, suggesting that ras function is either downstream or independent of p85 SH2 domain interaction.  相似文献   

18.
Summary The anion transport domain of the anion exchange protein (AEP) of human erythrocyte membranes (band 3, 95 kD mol wt) was probed with the substrate and affinity label pyridoxal-5-phosphate (PLP). Acting from outside, this probe labels two chymotryptic fragments of 65 and 35 kD of AEP but only the 35-kD fragment is protected from labeling by reversibly acting disulfonic stilbenes (DS). It is shown here by functional studies and by immunoblotting with anti-PLP antibodies that transmembrane gradients of anions determine the availability of a 35-kD fragmentlys residue to surface labeling by PLP, in analogy with their effects on labeling of 65-kD fragment by DS. On this basis, it is suggested that both fragments contribute to the formation of the transport domain. However, unlike DS, PLP blocks transport when reacted from within resealed membranes, indicating that the 35-kD fragment might contain components of the mobile unit of the AEP. Using impermeant fluorescence quenchers of PLP of both complexation type (anti-PLP antibodies) or collisional type (acrylamide) as topological probes for PLP-labeled sites, it is deduced that the 65-kD PLP-labeled and the 35-kD PLP-labeledlys groups are inaccessible to macromolecules from either surface, but the 65-kD PLP-lys is accessible to low molecular weight molecules from without while the 35-kD PLP-labeledlys shows accessibility primarily from within the cell surface. The studies indicate that the accommodation of a wide class of anions by AEP might be associated with the flexibility of the transport domain of the protein and its capacity to undergo transport-related conformational changes.  相似文献   

19.
RNase S consists of two proteolytic fragments of RNase A, residues 1-20 (S20) and residues 21-124 (S pro). A 15-mer peptide (S15p) with high affinity for S pro was selected from a phage display library. Peptide residues that are buried in the structure of the wild type complex are conserved in S15p though there are several changes at other positions. Isothermal titration calorimetry studies show that the affinity of S15p is comparable to that of the wild type peptide at 25 degrees C. However, the magnitudes of DeltaH(o) and DeltaC(p) are lower for S15p, suggesting that the thermal stability of the complex is enhanced. In agreement with this prediction, at pH 6, the T(m) of the S15p complex was found to be 10 degrees C higher than that of the wild type complex. This suggests that for proteins where fragment complementation systems exist, phage display can be used to find mutations that increase protein thermal stability.  相似文献   

20.
The structural proteins of HIV and Ebola display PTAP peptide motifs (termed 'late domains') that recruit the human protein Tsg101 to facilitate virus budding. Here we present the solution structure of the UEV (ubiquitin E2 variant) binding domain of Tsg101 in complex with a PTAP peptide that spans the late domain of HIV-1 p6(Gag). The UEV domain of Tsg101 resembles E2 ubiquitin-conjugating enzymes, and the PTAP peptide binds in a bifurcated groove above the vestigial enzyme active site. Each PTAP residue makes important contacts, and the Ala 9-Pro 10 dipeptide binds in a deep pocket of the UEV domain that resembles the X-Pro binding pockets of SH3 and WW domains. The structure reveals the molecular basis of HIV PTAP late domain function and represents an attractive starting point for the design of novel inhibitors of virus budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号