首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
BMI-1 and EZH2 Polycomb-group (PcG) proteins belong to two distinct protein complexes involved in the regulation of hematopoiesis. Using unique PcG-specific antisera and triple immunofluorescence, we found that mature resting peripheral T cells expressed BMI-1, whereas dividing blasts were EZH2(+). By contrast, subcapsular immature double-negative (DN) (CD4(-)/CD8(-)) T cells in the thymus coexpressed BMI-1 and EZH2 or were BMI-1 single positive. Their descendants, double-positive (DP; CD4(+)/CD8(+)) cortical thymocytes, expressed EZH2 without BMI-1. Most EZH2(+) DN and DP thymocytes were dividing, while DN BMI-1(+)/EZH2(-) thymocytes were resting and proliferation was occasionally noted in DN BMI-1(+)/EZH2(+) cells. Maturation of DP cortical thymocytes to single-positive (CD4(+)/CD8(-) or CD8(+)/CD4(-)) medullar thymocytes correlated with decreased detectability of EZH2 and continued relative absence of BMI-1. Our data show that BMI-1 and EZH2 expression in mature peripheral T cells is mutually exclusive and linked to proliferation status, and that this pattern is not yet established in thymocytes of the cortex and medulla. T cell stage-specific PcG expression profiles suggest that PcG genes contribute to regulation of T cell differentiation. They probably reflect stabilization of cell type-specific gene expression and irreversibility of lineage choice. The difference in PcG expression between medullar thymocytes and mature interfollicular T cells indicates that additional maturation processes occur after thymocyte transportation from the thymus.  相似文献   

2.
We have studied the effects of the steroid hormones, 17 beta-estradiol and dexamethasone, on the relative proportion of thymocyte expression of CD4 (L3T4), CD8 (Ly-2), TCR and IL-2R, used to identify different stages of thymocyte differentiation. After short-term in vivo steroid treatment, a significant decrease in the number and proportion of the CD4+/CD8+, double positive subpopulation was observed in parallel with a proportional increase in the percentage of the CD4+/CD8- single positive, of the CD4-/CD8-, double negative and, to a lesser extent, of the CD8+/CD4- subsets. Either steroid treatment increased the proportion of cells expressing either the epsilon-chain of the CD3 complex and/or the beta-chain of the TCR (beta-TCR) (TCR+/CD3+) and the 55 kDa protein of the IL-2R (IL-2R+), related to the increase of CD4+ SP thymocytes and of DN cells, respectively. Furthermore, the increased proportion of CD3+ cells could also be partially related to the increase of both the CD4+ and DN subsets. A decrease of the effect on either DN/IL-2R+ cells or CD4+ SP cells was selectively observed after long-term treatments with 17 beta-estradiol or DEX, respectively. It is concluded that after short-term administration, different steroid hormones mediate a similar selective depletion of DP, TCR-/CD3-, IL2R- cells presumably in an intermediate stage of differentiation. However, either steroid effects evolve differently in long-term treatment schedules, resulting in different effects on early (DN/IL2R+) and late (SP/IL2R-) steps of thymocyte differentiation.  相似文献   

3.
The murine intraepithelial lymphocyte (IEL) population is enriched in T cells that express the gamma delta-TCR, however, the biologic function served by these T cells remains obscure. IEL are considered to be major effector cells in mucosal immunity, and we have investigated whether IEL subsets could reverse orally induced systemic unresponsiveness (oral tolerance; OT) and support secondary type responses when adoptively transferred to mice orally tolerized with SRBC. When purified CD3+ IEL from mice orally primed with SRBC were transferred to adoptive hosts and challenged with SRBC, splenic IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses were observed. However, CD3+ IEL from HRBC orally primed mice did not abrogate SRBC induced OT. Further, HRBC-primed CD3+, IEL converted HRBC-specific OT but not SRBC-specific OT. CD3+ IEL could be separated into four subsets based on expression of CD4 and CD8. CD3+, CD4-, 8+ T cells were the major subset (74.5%), with smaller numbers of CD4- and CD8- (double negatives, DN) (7.8%), CD4+, 8- (7.6%) and CD4+, CD8+ (double positives) (10.1%) T cells. Interestingly, both the CD3+, CD8+, and the CD3+, DN IEL subsets abrogated OT, resulting in significant IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses when adoptively transferred to mice with OT. However, neither CD3+, CD4+, CD8-, nor double positive T cells affected OT when studied in this system. The CD3+, CD8+ IEL subset could be further separated into Thy-1+ (16.6%) and Thy-1- (83.4%) cells; adoptive transfer of Thy-1- cells abrogated oral tolerance whereas the Thy-1+ subset was without effect. When the expression of TCR on IEL with this biologic function was determined by use of monoclonal anti-alpha beta TCR (H57.597), TCR2-, CD3+ IEL possessed immunoregulatory function whereas the alpha beta-TCR+ (TCR2+) fraction did not abrogate OT. Immunoprecipitation of membrane fractions obtained from purified CD3+, CD4-, CD8+, Thy-1- IEL with polyclonal anti-delta peptide (Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) antibody revealed bands of 45 and 35 kDa, corresponding to the delta- and gamma-chains, respectively. These results suggest that gamma delta-TCR+ IEL possess a regulatory function, namely the restoration of immune responses in a state of oral tolerance. Further, both CD3+, CD4-, CD8+, Thy-1-, and CD3+, DN IEL T cells exhibit this effector contrasuppressor function.  相似文献   

4.
Programmed death receptor 1 (PD-1) is expressed on thymocytes in addition to activated lymphocyte cells. Its ligation is thought to negatively regulate T cell activation, and PD-1(-/-) mice develop autoimmunity. To study the role of PD-1 on the development and function of a monoclonal CD8(+) T cell population, 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice were generated. Unexpectedly, approximately 30% of peripheral T cells in these mice were CD4/CD8 double negative (DN). Although the DN cells were not activated by Ag-expressing APCs, they functioned normally in response to anti-CD3/anti-CD28. These cells had a naive surface phenotype and lacked expression of NK1.1, B220, and gammadelta TCR; and the majority did not up-regulate CD8alphaalpha expression upon activation, arguing that they are not predominantly diverted gammadelta-lineage cells. The thymus was studied in detail to infer the mechanism of generation of DN peripheral T cells. Total thymus cellularity was reduced in 2C TCR-transgenic/recombination-activating gene 2(-/-)/PD-1(-/-) mice, and a relative increase in DN cells and decrease in double-positive (DP) cells were observed. Increased annexin V(+) cells among the DP population argued for augmented negative selection in PD-1(-/-) mice. In addition, an increased fraction of the DN thymocytes was HSA negative, suggesting that they had undergone positive selection. This possibility was supported by decreased emergence of DN PD-1(-/-) 2C cells in H-2(k) bone marrow chimera recipients. Our results are consistent with a model in which absence of PD-1 leads to greater negative selection of strongly interacting DP cells as well as increased emergence of DN alphabeta peripheral T cells.  相似文献   

5.
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.  相似文献   

6.
alphabeta T cell development in the thymus is dependent on signaling through the TCR. The first of these signals is mediated by the pre-TCR, which is responsible for promoting pre-T cell proliferation and the differentiation of CD4(-)8(-)3(-) (DN) thymocytes into CD4(+)8(+)3(+) (DP) cells. In many cases, T cell signaling proteins known to be essential for TCR signaling in mature T cells are also required for pre-TCR signaling in DN thymocytes. Therefore, it came as a surprise to discover that mice lacking the Tec kinases Itk and Rlk, enzymes required for efficient activation of phospholipase C-gamma1 in mature T cells, showed no obvious defects in pre-TCR-dependent selection events in the thymus. In this report, we demonstrate that DN thymocytes lacking Itk, or Itk and Rlk, are impaired in their ability to generate normal numbers of DP thymocytes, especially when placed in direct competition with WT DN thymocytes. We also show that Itk is required for maximal pre-TCR signaling in DN thymocytes. These data demonstrate that the Tec kinases Itk and Rlk are involved in, but are not essential for, pre-TCR signaling in the thymus, suggesting that there is an alternative mechanism for activating phospholipase C-gamma1 in DN thymocytes that is not operating in DP thymocytes and mature T cells.  相似文献   

7.
8.
Kinetics of thymocyte developmental process in fetal and neonatal mice   总被引:1,自引:0,他引:1  
Xiao SY  Li Y  Chen WF 《Cell research》2003,13(4):265-273
Kinetics of thymocyte development in vivo during embryogenesis was pursued. The early development of thymocytes in the fetal and neonatal BALB/c mice was discontinuous, with four waves of cell proliferation occurring at fetal day (Fd) 14 to 17, Fd 18 to day (D) 1 after birth, D 2 to D 5 and D6 thereafter. The first three proliferation waves coincided with the generation of CD4^hiCD8^hi (DP), TCR CD4^hiCD8^-/^loCD8^int/hi(CD4 SP), and TCR CD4^-/^loCD8^int/hi (CD8 SP) thymocytes, respectively. The transition from DN to DP cells was further investigated and it was found out that there were two differential pathways via im-mature single positive (ISP) cells in the BALB/c mice, each functioning at different fetal ages. One is via TCR^-CD4^-CD8^ cells, occurring between Fd 15 and Fd 17 and the other is via TCR^-CD4^ CD86-cells,occurring from Fd 17 until birth. In contrast, the TCR^-CD4^-CD8^ pathway dominated overwhelminglyin the C57BL/6 mice. These findings shed new light on the hypothesis that the differential pathway pref-erence varies with mouse strains. With respect to the shift in the intensity of CD4 and CD8 expression onthymocytes from fetal to adult mice, the TCR CD4^hiCD8^-/^lo, and TCR^ CD4^-/^loCD8^int/hi subsets might be equivalent to the medullary type TCR^ CD4/CD8 SP cells.  相似文献   

9.
10.
11.
The role of the CD8-, CD4- (double negative) (DN) T cells accumulating in MRL/Mp-lpr/lpr (lpr) mice is unclear. Although they bear the TCR/CD3, the lpr DN cells do not respond to Ag, and the specificity of TCR/CD3 on these cells is unknown. With the aid of monoclonal anti-murine CD3 epsilon (145-2C11), we have investigated the function of the CD3 molecule on the DN cells. 145-2C11 was not mitogenic for lpr DN lymph node cells (LNC), even in the presence of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, whereas MRL/Mp-+/+ (+/+) LNC responded strongly. Surprisingly, CD3 modulation induced by 145-2C11 was much more rapid for lpr DN than for +/+ LNC. For example, the modulation observed after 10 min in lpr DN LNC required at least 2 h in +/+ cells. This was not due solely to a property of the 145-2C11 antibody, because both TPA and the F23.1 anti-TCR mAb also provoked a faster modulation of the TCR in lpr DN LNC. Double-staining experiments showed that co-culturing +/+ and lpr DN LNC did not alter their respective rates of modulation, which suggests an intrinsic defect in the lpr DN cells. Moreover, in LNC from 6-wk-old lpr mice (before the appearance of DN cells), as well as in normal phenotype-bearing T cells (CD8+ or CD4+) from 6-mo-old lpr mice, the CD3 modulation was similar to that of +/+ LNC. After modulation, the CD3 molecule was reexpressed at the surface of both +/+ and lpr DN cells during subsequent incubation of the cells without 145-2C11. In addition, spontaneous recycling of CD3 was similar in +/+ and lpr DN LNC. The rapid modulation of the lpr DN TCR/CD3 is presumably related to the anergy of this cell population.  相似文献   

12.
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.  相似文献   

13.
Previous work has shown that abrogation of oral tolerance is mediated by T cells which are found in the CD3+, L3T4- (CD4-), and Lyt-2- (CD8-) subset (termed double-negative; DN) in mice. Inasmuch as it is known that athymic, nude (nu/nu) mice possess Thy 1+, CD4-, and CD8- T cells which also exhibit a functionally rearranged TCR gamma-chain, we investigated whether this subset of nude T cells contained functional immunoregulatory cells. In this report, we examined the phenotype and distribution of CD3+ T cells in the spleen and in the mesenteric and peripheral lymph nodes of BALB/c nu/nu mice in comparison with normal mice (+/+). In the spleens of nude mice, the predominant CD3+ T cell subpopulation was DN. Further, in mesenteric and peripheral lymph nodes, approximately one-third and one-half of the CD3+ T cells were double negative, respectively. In contrast, CD3+, DN T cells represent a small subpopulation in normal (+/+) mice. We next showed that functional regulatory T cells which possess the ability to abrogate oral tolerance were induced in nu/nu mice by Ag priming. BALB/c nude mice were immunized with SRBC, and the splenic CD3+, Vicia villosa-adherent cells were obtained by panning. Adoptive transfer of CD3+, V. villosa-adherent T cells to orally tolerant BALB/c mice restored responsiveness to SRBC, whereas V. villosa nonadherent cells were without effect. In other experiments, CD3+ T cells from the spleens of SRBC-primed mice were further enriched for the CD5+, DN phenotype and adoptive transfer of this subset completely abrogated oral tolerance to SRBC. To characterize the nature of the TCR expressed on these CD3+, DN T cells, we developed a rabbit antibody to a synthetic peptide (residues 209-218: Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) which was synthesized from a deduced sequence of the murine delta-gene. Immunoprecipitation of a cell membrane fraction from CD3+, DN T cells with anti-delta TCR antibody isolated a 45-kDa band. Furthermore, immunoprecipitation of these cells with anti-CD3 (145-2C11) revealed bands at 45 and 35 kDa (corresponding to delta- and gamma-chains, respectively). Taken together, these results are the first to show that gamma delta-TCR bearing CD3+, CD4-, and CD8- T cells are functional and reverse oral tolerance when adoptively transferred.  相似文献   

14.
In order to examine the influence of chronic alpha1-adrenergic receptor (alpha1-AR) blockade on the thymus structure and T-cell maturation, peripubertal and adult male rats were treated with urapidil (0.20 mg/kg BW/d; s.c.) over 15 consecutive days. Thymic structure and phenotypic characteristics of the thymocytes were assessed by stereological and flow cytometry analysis, respectively. In immature rats, treatment with urapidil reduced the body weight gain and, affecting the volume of cortical compartment and its cellularity decreased the organ size and the total number of thymocytes compared to age-matched saline-injected controls. The percentage of CD4+8- single positive (SP) thymocytes was decreased, while that of CD4-8+ was increased suggesting, most likely, a disregulation in final steps of the positively selected cells maturation. However, alpha1-AR blockade in adult rats increased the thymus weight as a consequence of increase in the cortical size and cellularity. The increased percentage of most immature CD4-8- double negative (DN) cells associated with decreased percentage of immature CD4+8+ double positive (DP) thymocytes suggests a decelerated transition from DN to DP stage of T-cell development. As in immature rats, the treatment in adult rats evoked changes in the relative numbers of SP cells, but contrary to immature animals, favoring the maturation of CD4+8- over CD4-8+ thymocytes. These results demonstrate that: i) chronic blockade of alpha1-ARs affects both the thymus structure and thymocyte differentiation, ii) these effects are age-dependent, pointing out to pharmacological manipulation of alpha1-AR-mediated signaling as potential means for modulation of the intrathymic T-cell maturation.  相似文献   

15.
16.
17.
Ephrin-B1 is critical in T-cell development   总被引:1,自引:0,他引:1  
Yu G  Mao J  Wu Y  Luo H  Wu J 《The Journal of biological chemistry》2006,281(15):10222-10229
Eph kinases are the largest family of receptor tyrosine kinases, and their ligands, ephrins (EFNs), are also cell surface molecules. In this study, we investigated the role of EFNB1 and the Ephs it interacts with (collectively called EFNB1 receptors) in mouse T-cell development. In the thymus, CD8 single positive (SP) and CD4CD8 double positive (DP) cells expressed high levels of EFNB1 and EFNB1 receptors, whereas CD4 SP cells had moderate expression of both. Soluble EFNB1-Fc in fetal thymus organ culture caused significant subpopulation ratio skew, with increased CD4 SP and CD8 SP and decreased DP percentage, while the cellularity of the thymus remained constant. Moreover, in EFNB1-treated fetal thymus organ culture, CD117(+), CD25(+), DP, CD4 SP, and CD8 SP cells all had significantly enhanced proliferation history, according to bromodeoxyuridine uptake. In vitro culture of isolated thymocytes revealed that EFNB1-Fc on solid-phase protected thymocytes from anti-CD3-induced apoptosis, with concomitant augmentation of several antiapoptotic factors, particularly in CD4 SP and CD8 SP cells; on the other hand, soluble EFNB1-Fc promoted anti-CD3-induced apoptosis, as was the case in vivo. This study reveals that EFNB1 and EFNB1 receptors are critical in thymocyte development.  相似文献   

18.
The regulation of apoptosis in mature CD4+ or CD8+ alphabeta+ T cells has been well studied. How the survival and death is regulated in peripheral CD4-CD8- (double negative, DN) alphabeta+ T cells remains unknown. Recent studies suggest that peripheral DN T cells may play an important role in the regulation of the immune responses mediated by CD4+ or CD8+ T cells. Here, we used immunosuppressive DN T cell clones to elucidate the mechanisms involved in the regulation of death and survival of alphabeta+ DN T cells. The DN T cell clones were generated from the spleen cells of 2C transgenic mice, which express the transgenic TCR specific for Ld and permanently accepted Ld+ skin allografts after pretransplant infusion of Ld+ lymphocytes. We report that 1) the mature DN T cells are highly resistant to TCR cross-linking-induced apoptosis in the presence of exogenous IL-4; 2) Fas/Fas-ligand and TNF-alpha/TNFR pathways do not play an apparent role in regulating apoptosis in DN T cells; 3) the DN T cells constitutively express a high level of Bcl-xL, but not Bcl-2; 4) both Bcl-xL and Bcl-2 are up-regulated following TCR-cross-linking; and 5) IL-4 stimulation significantly up-regulates Bcl-xL and c-Jun expression and leads to mitogen-activated protein kinase phosphorylation in DN T cells, which may contribute to the resistance to apoptosis in these T cells. Taken together, these results provide us with an insight into how mature DN T cells resist activation-induced apoptosis to provide a long-term suppressor function in vivo.  相似文献   

19.
20.
We have characterized CD4-CD8- double negative (DN) thymocytes that express TCR-alpha beta and represent a minor thymocyte subpopulation expressing a markedly skewed TCR repertoire. We found that DN TCR-alpha beta + thymocytes resemble mature T cells in that they (a) are phenotypically CD2hiCD5hiQa2+HSA-, (b) appear late in ontogeny, and (c) are susceptible to cyclosporin A-induced maturation arrest. In addition, we found that DNA sequences 5' to the CD8 alpha gene were demethylated relative to their germline state, suggesting that DN TCR-alpha beta + thymocytes are derived from cells that had at one time expressed their CD8 alpha gene locus. Because DN TCR-alpha beta + thymocytes are known to express an unusual TCR repertoire with significant overexpression of V beta 8, we were interested in examining the possible role played by self-Ag in shaping their TCR repertoire. It has been suggested that DN TCR-alpha beta + thymocytes are derived from potentially self-reactive thymocytes that have escaped clonal deletion by down-regulating their surface expression of CD4 and/or CD8 determinants. However, apparently inconsistent with such an hypothesis, we found that the frequency of DN thymocytes expressing various anti-self TCR (V beta 6, V beta 8.1, V beta 11, V beta 17a) were not increased in strains expressing their putative self-Ag, but instead were either unaffected or significantly reduced in those strains. With regard to V beta 8 expression among DN TCR-alpha beta + thymocytes, V beta 8 overexpression in DN TCR-alpha beta + thymocytes appeared to be independent of, and superimposed on, the developmental appearance of the basic DN thymocyte repertoire. Even though V beta 8 overexpression appeared to be generated by a mechanism distinct from that generating the rest of the DN TCR-alpha beta + thymocyte repertoire, we found that super-Ag against which V beta 8 TCR react introduced into the neonatal differentiation environment also significantly reduced, rather than increased, the frequency of DN TCR-alpha beta + V beta 8+ thymocytes. Thus, the present study is consistent with DN TCR-alpha beta + thymocytes being mature cells derived from CD8+ precursors, and documents that their TCR repertoire can be influenced, at least negatively, by either self-Ag or Ag introduced into the neonatal differentiation environment. However, we found no evidence to support the hypothesis that DN TCR-alpha beta + thymocytes are enriched in cells expressing TCR reactive against self-Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号