首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ting Su  Lothar Esser  Di Xia  Chang-An Yu  Linda Yu 《BBA》2012,1817(2):298-305
Cytochrome bc1 complex catalyzes the reaction of electron transfer from ubiquinol to cytochrome c (or cytochrome c2) and couples this reaction to proton translocation across the membrane. Crystallization of the Rhodobacter sphaeroides bc1 complex resulted in crystals containing only three core subunits. To mitigate the problem of subunit IV being dissociated from the three-subunit core complex during crystallization, we recently engineered an R. sphaeroides mutant in which the N-terminus of subunit IV was fused to the C-terminus of cytochrome c1 with a 14-glycine linker between the two fusing subunits, and a 6-histidine tag at the C-terminus of subunit IV (c1-14Gly-IV-6His). The purified fusion mutant complex shows higher electron transfer activity, more structural stability, and less superoxide generation as compared to the wild-type enzyme. Preliminary crystallization attempts with this mutant complex yielded crystals containing four subunits and diffracting X-rays to 5.5 Å resolution.  相似文献   

2.
Ubiquinol: cytochrome c reductase was isolated from Neurospora mitochondria as a protein-detergent complex and dissociated by mild salt treatment. Three parts were obtained and characterized. Firstly, a complex containing the subunits III (cytochrome b), IV (cytochrome c1), VI, VII, VIII and IX; secondly, a complex containing the subunits I and II; and thirdly, the single subunit V (iron-sulphur subunit). Membrane crystals were prepared from the cytochrome bc1 subunit complex and by combining tilted electron microscopic views of the crystals, a low-resolution three-dimensional structure was calculated. This structure was compared to that of the whole cytochrome reductase (previously determined by electron microscopy of membrane crystals). Protein density absent from the structure of the subunit complex was then attributed to the missing subunits according to their size and shape and their association with the phospholipid bilayer.  相似文献   

3.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   

4.
The location of the cytochrome binding site on the reaction center of Rhodopseudomonas sphaeroides was studied by two different approaches. In one, cross-linking agents, principally dithiobis(propionimidate) and dimethyl suberimidate, were used to link cytochrome c and cytochrome c2 to reaction centers; in the other, the inhibition of electron transfer by antibodies against the subunits was investigated. Cytochrome c (horse) cross-linked to the L and M subunits, whereas cytochrome c2 (R. sphaeroides) cross-linked only to the L subunit. The cross-linked reaction center-cytochrome complexes were isolated by affinity chromatography. The rate of electron transfer in the cross-linked cytochrome c2 complex was the same as that in the un-cross-linked complex. However, when cytochrome c was used, the rate in the cross-linked complex was about 15 times slower than that in the un-cross-linked complex. Fab fragments of antibodies specific against the L and M subunits blocked electron transfer from both cytochrome c (horse) and cytochrome c2 (R. sphaeroides). Antibodies specific for the H subunit did not block either reaction. We conclude that the cytochrome binding site on the reaction center is close (approximately 10 A) to both the L and M subunits, possibly in a cleft between them.  相似文献   

5.
Sequence alignment of cytochrome b of the cytochrome bc1 complex from various sources reveals that bacterial cytochrome b contain an extra fragment at the C terminus. To study the role of this fragment in bacterial cytochrome bc1 complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with progressive deletion from this fragment (residues 421-445) were generated and characterized. The cytbDelta-(433-445) bc1 complex, in which 13 residues from the C-terminal end of this fragment are deleted, has electron transfer activity, subunit composition, and physical properties similar to those of the complement complex, indicating that this region of the extra fragment is not essential. In contrast, the electron transfer activity, binding of cytochrome b, ISP, and subunit IV to cytochrome c1, redox potentials of cytochromes b and c1 in the cytbDelta-(427-445), cytbDelta-(425-445), and cytbDelta-(421-445) mutant complexes, in which 19, 21, or all residues of this fragment are deleted, decrease progressively. EPR spectra of the [2Fe-2S] cluster and the cytochromes b in these three deletion mutant bc1 complexes are also altered; the extent of spectral alteration increases as this extra fragment is shortened. These results indicate that the first 12 residues (residues 421-432) from the N-terminal end of the C-terminal extra fragment of cytochrome b are essential for maintaining structural integrity of the bc1 complex.  相似文献   

6.
The cytochrome bc(1) complex (bc(1)) is a major contributor to the proton motive force across the membrane by coupling electron transfer to proton translocation. The crystal structures of wild type and mutant bc(1) complexes from the photosynthetic purple bacterium Rhodobacter sphaeroides (Rsbc(1)), stabilized with the quinol oxidation (Q(P)) site inhibitor stigmatellin alone or in combination with the quinone reduction (Q(N)) site inhibitor antimycin, were determined. The high quality electron density permitted assignments of a new metal-binding site to the cytochrome c(1) subunit and a number of lipid and detergent molecules. Structural differences between Rsbc(1) and its mitochondrial counterparts are mostly extra membranous and provide a basis for understanding the function of the predominantly longer sequences in the bacterial subunits. Functional implications for the bc(1) complex are derived from analyses of 10 independent molecules in various crystal forms and from comparisons with mitochondrial complexes.  相似文献   

7.
The ubiquinol:cytochrome c2 oxidoreductase (bc1 complex) of Rhodobacter sphaeroides consists of four subunits. One of these subunits, cytochrome c1, is the site of interaction with cytochrome c2, a periplasmic protein. In addition, the sequences of the fbcC gene and of the cytochrome c1 subunit that it encodes suggest that the protein should be located on the periplasmic side of the cytoplasmic membrane and that it is anchored to the membrane by a single membrane-spanning alpha-helix located at the carboxyl-terminal end of the polypeptide. Site-directed mutagenesis of the fbcC gene was used to alter the codon for Gln228 to a stop codon. This results in the production of a truncated version of the cytochrome c1 subunit that lacks the membrane anchor at the carboxyl terminus. The bc1 complex fails to assemble properly as a result of this mutation, but the Rb. sphaeroides cells expressing the altered gene contain a water-soluble form of cytochrome c1 in the periplasm. The water-soluble cytochrome c1 was purified and characterized. The amino-terminal sequence is identical with that of the membrane-bound subunit, indicating the signal sequence is properly processed. High pressure liquid chromatography gel filtration chromatography indicates it is monomeric (28 kDa). The heme content and electrochemical properties are similar to those of the intact subunit within the complex. Flash-induced electron transfer kinetics measured using whole cells demonstrated that the water-soluble cytochrome c1 is competent as a reductant for cytochrome c2 within the periplasmic space. These data show that the isolated water-soluble cytochrome c1 retains many of the properties of the membrane-bound subunit of the bc1 complex and, therefore, will be useful for further structural and functional characterization.  相似文献   

8.
The crystal structure of bovine mitochondrial cytochrome bc1 complex, an integral membrane protein complex of 11 different subunits with a total molecular mass of 242 kDa, demonstrated a tightly associated dimer consisting of three major regions: a matrix region primarily made of subunits core1, core2, 6, and 9; a transmembrane-helix region of 26 helices in the dimer contributed by cytochrome b, cytochrome c1, the Rieske iron-sulfur protein (ISP), subunits 7, 10, and 11; and an intermembrane-space region composed of extramembrane domains of ISP, cytochrome c1, and subunit 8. The structure also revealed the positions of and distances between irons of prosthetic groups, and two symmetry related cavities in the transmembrane-helix region upon dimerization of the bc1 complex. Extensive crystallographic studies on crystals of bc1 complexed with inhibitors of electron transfer identified binding pockets for both Qo and Qi site inhibitors. Discrete binding sites for subtypes of Qo site inhibitors have been mapped onto the Qo binding pocket, and bindings of different subtypes of Qo site inhibitors are capable of inducing dramatic conformational changes in the extramembrane domain of ISP. A novel electron transfer mechanism for the bc1 complex consistent with crystallographic observations is discussed.  相似文献   

9.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

10.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

11.
L Yu  C A Yu 《Biochemistry》1991,30(20):4934-4939
The cytochrome b-c1 complex from Rhodobacter sphaeroides was resolved into four protein subunits by a phenyl-Sepharose CL-4B column eluted with different detergents. Individual subunits were purified to homogeneity. Antibodies against subunit IV (Mr = 15,000) were raised and purified. These antibodies had a high titer with isolated subunit IV and with the b-c1 complex from R. sphaeroides. They inhibited 95% of the ubiquinol-cytochrome c reductase activity of the cytochrome b-c1 complex, indicating that subunit IV is essential for the catalytic function of this complex. When detergent-solubilized chromatopores were passed through an anti-subunit IV coupled Affi-Gel 10 column, no no ubiquinol-cytochrome c reductase activity was detected in the effluent, and four proteins, corresponding to the four subunits in the isolated complex, were adsorbed to the column. This indicated that subunit IV in an integral part of the cytochrome b-c1 complex. No change in the apparent Kms for Q2H2 and for cytochrome c was observed with anti-subunit IV treated complex. Antibodies against subunit IV had little effect on the stability of the ubisemiquinone radical in this complex, suggesting that they do not bind to the subunit near its ubiquinone-binding site.  相似文献   

12.
The purple photosynthetic bacterium Rhodovulum sulfidophilum has an unusual reaction center- (RC-) bound cytochrome subunit with only three hemes, although the subunits of other purple bacteria have four hemes. To understand the electron-transfer pathway through this subunit, three mutants of R. sulfidophilum were constructed and characterized: one lacking the RC-bound cytochrome subunit, another one lacking cytochrome c(2), and another one lacking both of these. The mutant lacking the RC-bound cytochrome subunit was grown photosynthetically with about half the growth rate of the wild type, indicating that the presence of the cytochrome subunit, while not indispensable, is still advantageous for the photosynthetic electron transfer to support its growth. The mutant lacking both the cytochrome subunit and cytochrome c(2) showed a slower rate of growth by photosynthesis (about a fourth of that of the wild type), indicating that cytochrome c(2) is the dominant electron donor to the RC mutationally devoid of the cytochrome subunit. On the other hand, the mutant lacking only the cytochrome c(2) gene grew photosynthetically as fast as the wild type, indicating that cytochrome c(2) is not the predominant donor to the RC-bound triheme cytochrome subunit. We further show that newly isolated soluble cytochrome c-549 with a redox midpoint potential of +238 mV reduced the photooxidized cytochrome subunit in vitro, suggesting that c-549 mediates the cytochrome c(2)-independent electron transfer from the bc(1) complex to the RC-bound cytochrome subunit. These results indicate that the soluble components donating electrons to the RC-bound triheme cytochrome subunit are somewhat different from those of other purple bacteria.  相似文献   

13.
Several components of the respiratory chain of the eubacterium Thermus thermophilus have previously been characterized to various extent, while no conclusive evidence for a cytochrome bc(1) complex has been obtained. Here, we show that four consecutive genes encoding cytochrome bc(1) subunits are organized in an operon-like structure termed fbcCXFB. The four gene products are identified as genuine subunits of a cytochrome bc(1) complex isolated from membranes of T. thermophilus. While both the cytochrome b and the FeS subunit show typical features of canonical subunits of this respiratory complex, a further membrane-integral component (FbcX) of so far unknown function copurifies as a subunit of this complex. The cytochrome c(1) carries an extensive N-terminal hydrophilic domain, followed by a hydrophobic, presumably membrane-embedded helical region and a typical heme c binding domain. This latter sequence has been expressed in Escherichia coli, and in vitro shown to be a kinetically competent electron donor to cytochrome c(552), mediating electron transfer to the ba(3) oxidase. Identification of this cytochrome bc(1) complex bridges the gap between the previously reported NADH oxidation activities and terminal oxidases, thus, defining all components of a minimal, mitochondrial-type electron transfer chain in this evolutionary ancient thermophile.  相似文献   

14.
The ubihydroquinone-cytochrome c oxidoreductase (or the cytochrome bc1 complex) from Rhodobacter capsulatus is composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits encoded by petA(fbcF), petB(fbcB), and petC(fbcC) genes organized as an operon. In the work reported here, petB(fbcB) was split genetically into two cistrons, petB6 and petBIV, which encoded two polypeptides corresponding to the four amino-terminal and four carboxyl-terminal transmembrane helices of cytochrome b, respectively. These polypeptides resembled the cytochrome b6 and su IV subunits of chloroplast cytochrome b6f complexes, and together with the unmodified subunits of the cytochrome bc1 complex, they formed a novel enzyme, named cytochrome b6c1 complex. This membrane-bound multisubunit complex was functional, and despite its smaller amount, it was able to support the photosynthetic growth of R. capsulatus. Upon further mutagenesis, a mutant overproducing it, due to a C-to-T transition at the second base of the second codon of petBIV, was obtained. Biochemical analyses, including electron paramagnetic spectroscopy, with this mutant revealed that the properties of the cytochrome b6c1 complex were similar to those of the cytochrome bc1 complex. In particular, it was highly sensitive to inhibitors of the cytochrome bc1 complex, including antimycin A, and the redox properties of its b- and c-type heme prosthetic groups were unchanged. However, the optical absorption spectrum of its cytochrome bL heme was modified in a way reminiscent of that of a cytochrome b6f complex. Based on the work described here and that with Rhodobacter sphaeroides (R. Kuras, M. Guergova-Kuras, and A. R. Crofts, Biochemistry 37:16280-16288, 1998), it appears that neither the inhibitor resistance nor the redox potential differences observed between the bacterial (or mitochondrial) cytochrome bc1 complexes and the chloroplast cytochrome b6f complexes are direct consequences of splitting cytochrome b into two separate polypeptides. The overall findings also illustrate the possible evolutionary relationships among various cytochrome bc oxidoreductases.  相似文献   

15.
The mitochondrial cytochrome bc1 complex is a multifunctional membrane protein complex. It catalyzes electron transfer, proton translocation, peptide processing, and superoxide generation. Crystal structure data at 2.9 A resolution not only establishes the location of the redox centers and inhibitor binding sites, but also suggests a movement of the head domain of the iron-sulfur protein (ISP) during bc1 catalysis and inhibition of peptide-processing activity during complex maturation. The functional importance of the movement of extramembrane (head) domain of ISP in the bc1 complex is confirmed by analysis of the Rhodobacter sphaeroides bc1 complex mutants with increased rigidity in the ISP neck and by the determination of rate constants for acid/base-induced intramolecular electron transfer between [2Fe-2S] and heme c1 in native and inhibitor-loaded beef complexes. The peptide-processing activity is activated in bovine heart mitochondrial bc1 complex by nonionic detergent at concentrations that inactivate electron transfer activity. This peptide-processing activity is shown to be associated with subunits I and II by cloning, overexpression and in vitro reconstitution. The superoxide-generation site of the cytochrome bc1 complex is located at reduced bL and Q*-. The reaction is membrane potential-, and cytochrome c-dependent.  相似文献   

16.
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The respiratory cytochrome bc(1) complex is a fundamental enzyme in biological energy conversion. It couples electron transfer from ubiquinol to cytochrome c with generation of proton motive force which fuels ATP synthesis. The complex from the α-proteobacterium Paracoccus denitrificans, a model for the medically relevant mitochondrial complexes, lacked structural characterization. We show by LILBID mass spectrometry that truncation of the organism-specific, acidic N-terminus of cytochrome c(1) changes the oligomerization state of the enzyme to a dimer. The fully functional complex was crystallized and the X-ray structure determined at 2.7-? resolution. It has high structural homology to mitochondrial complexes and to the Rhodobacter sphaeroides complex especially for subunits cytochrome b and ISP. Species-specific binding of the inhibitor stigmatellin is noteworthy. Interestingly, cytochrome c(1) shows structural differences to the mitochondrial and even between the two Rhodobacteraceae complexes. The structural diversity in the cytochrome c(1) surface facing the ISP domain indicates low structural constraints on that surface for formation of a productive electron transfer complex. A similar position of the acidic N-terminal domains of cytochrome c(1) and yeast subunit QCR6p is suggested in support of a similar function. A model of the electron transfer complex with membrane-anchored cytochrome c(552), the natural substrate, shows that it can adopt the same orientation as the soluble substrate in the yeast complex. The full structural integrity of the P. denitrificans variant underpins previous mechanistic studies on intermonomer electron transfer and paves the way for using this model system to address open questions of structure/function relationships and inhibitor binding.  相似文献   

18.
The advantages of using bacterial systems to study the mechanism and function of cytochrome bc (1) complexes do not extend readily to their structural investigations. High quality crystals of bacterial complexes have been difficult to obtain despite the enzymes' smaller sizes and simpler subunit compositions compared to their mitochondrial counterparts. In the course of the structure determination of the bc (1) complex from R. sphaeroides, we observed that the growth of only low quality crystals correlated with low activity and stability of the purified complex, which was mitigated in part by introducing a double mutations to the enzyme. The S287R(cyt b)/V135S(ISP) mutant shows 40% increase in electron transfer activity and displays a 4.3 degrees C increase in thermal stability over wild-type enzyme. The amino acid histidine was found important in maintaining structural integrity of the bacterial complex, while the respiratory inhibitors such as stigmatellin are required for immobilization of the iron-sulfur protein extrinsic domain. Crystal quality of the R. sphaeroides bc (1) complex can be improved further by the presence of strontium ions yielding crystals that diffracted X-rays to better than 2.3 A resolution. The improved crystal quality can be understood in terms of participation of strontium ions in molecular packing arrangement in crystal.  相似文献   

19.
In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.  相似文献   

20.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号