首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Chemokines and their receptors have been implicated in the pathogenesis of different forms of heart failure (HF). We examined CC-and CXC-chemokine receptor expression in fresh peripheral blood leukocyte populations from 24 end-stage HF patients consisting of coronary artery disease (CAD; n=6) and hypertrophic cardiomyopathy (HCM; n=7) or idiopathic dilated cardiomyopathy (IDCM; n=8) or valvular disease (VD; n=3) and compared the data with 18 healthy controls. Levels of CCR1, 2, 3, 4, 5, and 7, and CXCR1, 2, 3, and 4 were measured by flow cytometry, and the expression profile was assessed as molecules of equivalent soluble fluorochrome units as well as frequency (percentage) of CD3+, CD4+, and CD8+ T cells and monocytes or granulocytes. Frequency of CD3+ CXCR4+, CD3+ CXCR1+, and CD3+ CXCR3+ cells was significantly increased in HF patients, whereas only CCR7 and CXCR4 expression levels were elevated on CD3+ cells. Both CD4+ CXCR4+ and CD8+ CXCR4+ cell frequencies were significantly increased irrespective of cardiac disease etiology. Elevated CCR7 expression was less pronounced on CD4+ than CD8+ cells in patients with CAD and IDCM. Expression of CXCR4 on CD8+ cells was upregulated substantially, regardless of the cause of disease. CD8+ CXCR1+ and CD8+ CXCR3+ but not CD4+ CXCR1+ or CD4+ CXCR3+ cells were increased in the HF patients with IDCM and CAD, respectively. Expression of CXCR1 or CXCR3 on both CD4+ and CD8+ cells did not differ in all the groups. For monocytes, frequency of CD14+ CCR1+ and CD14+ CCR2+ cells was significantly decreased in CAD patients, whereas, increase in CD14+ CXCR4+ cell frequency was accompanied with elevated CXCR4 expression. On granulocytes, CXCR1 and CXCR2 receptors were downregulated in all patients, compared with controls. Our results suggest that the altered expression profile of CC- and CXC-chemokine receptors on circulating leukocyte populations involves enhanced activation of the immune system, perhaps as part of the pathogenic mechanisms in HF. Modulation of the chemokine network could offer interesting novel therapeutic modalities for end-stage HF.  相似文献   

9.
10.
Memory T cells display phenotypic heterogeneity. Surface antigens previously regarded as exclusive markers of naive T cells, such as L-selectin (CD62L), can also be detected on some memory T cells. Moreover, a fraction of CD45RO+ (positive for the short human isoform of CD45) memory T cells reverts to the CD45RA+ (positive for the long human isoform of CD45) phenotype. We analyzed patients with biopsy-proven localized Wegener's granulomatosis (WG) (n = 5), generalized WG (n = 16) and age- and sex-matched healthy controls (n = 13) to further characterize memory T cells in WG. The cell-surface expression of CD45RO, CD45RA, CD62L, CCR3, CCR5 and CXCR3 was determined on blood-derived T cells by four-color flow cytometric analysis. The fractions of CCR5+ and CCR3+ cells within the CD4+CD45RO+ and CD8+CD45RO+ memory T cell populations were significantly expanded in localized and generalized WG. The mean percentage of Th1-type CCR5 expression was higher in localized WG. Upregulated CCR5 and CCR3 expression could also be detected on a fraction of CD45RA+ T cells. CD62L expression was seen on approximately half of the memory T cell populations expressing chemokine receptors. This study demonstrates for the first time that expression of the inducible inflammatory chemokine receptors CCR5 and CCR3 on CD45RO+ memory T cells, as well as on CD45RA+ T cells ('revertants'), contributes to phenotypic heterogeneity in an autoimmune disease, namely WG. Upregulated CCR5 and CCR3 expression suggests that the cells belong to the effector memory T cell population. CCR5 and CCR3 expression on CD4+ and CD8+ memory T cells indicates a potential to respond to chemotactic gradients and might be important in T cell migration contributing to granuloma formation and vasculitis in WG.  相似文献   

11.
12.
The cdk inhibitor p57kip2, encoded by the Cdkn1c gene, plays a critical role in mammalian development and in the differentiation of several tissues. Cdkn1c protein levels are carefully regulated via imprinting and other epigenetic mechanisms affecting both the promoter and distant regulatory elements, which restrict its expression to particular developmental phases or specific cell types. Inappropriate activation of these regulatory mechanisms leads to Cdkn1c silencing, causing growth disorders and cancer. We have previously reported that, in skeletal muscle cells, induction of Cdkn1c expression requires the binding of the bHLH myogenic factor MyoD to a long-distance regulatory element within the imprinting control region KvDMR1. Interestingly, MyoD binding to KvDMR1 is prevented in myogenic cell types refractory to the induction of Cdkn1c. In the present work, we took advantage of this model system to investigate the epigenetic determinants of the differential interaction of MyoD with KvDMR1. We show that treatment with the DNA demethylating agent 5-azacytidine restores the binding of MyoD to KvDMR1 in cells unresponsive to Cdkn1c induction. This, in turn, promotes the release of a repressive chromatin loop between KvDMR1 and Cdkn1c promoter and, thus, the upregulation of the gene. Analysis of the chromatin status of Cdkn1c promoter and KvDMR1 in unresponsive compared to responsive cell types showed that their differential responsiveness to the MyoD-dependent induction of the gene does not involve just their methylation status but, rather, the differential H3 lysine 9 dimethylation at KvDMR1. Finally, we report that the same histone modification also marks the KvDMR1 region of human cancer cells in which Cdkn1c is silenced. On the basis of these results, we suggest that the epigenetic status of KvDMR1 represents a critical determinant of the cell type-restricted expression of Cdkn1c and, possibly, of its aberrant silencing in some pathological conditions.  相似文献   

13.
14.
15.
16.
17.
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14+CD16+ monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14+CD16+ monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14+CD16+ monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14+ cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14+CD16+ monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14+CD16+ monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14+CD16+ monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.  相似文献   

18.
Regulatory T cells (Tregs) are specialized CD4+ T lymphocytes helping defend against autoimmunity and inflammation. Although age is associated with increased inflammation and autoimmunity, few reports address age effects of immune regulation or auto‐aggressive T cells. We show here that young and aged naïve CD4+ T cells are equivalently auto‐aggressive in vivo in T cell‐driven autoimmune colitis. Young and aged CD4+ Tregs equally suppressed age‐matched T cell proliferation in vitro and controlled clinical and pathologic T cell‐driven autoimmune colitis, suggesting equivalent regulatory function. However, whereas young and aged CD4+ Tregs suppressed interferon (IFN)‐γ+ T cells equivalently in this model, aged CD4+ Tregs unexpectedly failed to restrain interleukin (IL)‐17+ T cells. Nonetheless, young and aged CD4+ Tregs equally restrained IL‐17+ T cells in vivo during acute inflammation, suggesting a chronic inflammation‐related defect in aged CD4+ Tregs. In support, aged Tregs expressed reduced STAT3 activation, a defect associated with poor IL‐17‐producing T cell restraint. Aged naïve mice had markedly increased programmed death (PD)‐1+ T cells, but these exhibited no significant auto‐aggressive or regulatory functions in T cell‐driven colitis. Young CD8+ CD122? T cells induce autoimmune bone marrow failure, but we show that aged CD8+ CD122? T cells do not. These data demonstrate no apparent age‐related increase in auto‐aggressive T cell behavior, but disclose previously unrecognized functional defects in aged CD4+ Tregs during chronic inflammation. IL‐17 can be inflammatory and contributes to certain autoimmune disorders. Reduced aged Treg function during chronic inflammation and reduced IL‐17 restraint could contribute to age‐related inflammation or autoimmunity.  相似文献   

19.
20.
Japanese encephalitis(JE) is a viral encephalitis disease caused by Japanese encephalitis virus(JEV) infection. Uncontrolled inflammatory responses in the central nervous system(CNS) are a hallmark of severe JE. Although the CCR2–CCL2 axis is important for monocytes trafficking during JEV infection, little is known about its role in CNS trafficking of CD8~+T cells. Here, we characterized a mouse model of JEV infection, induced via intravenous injection(i.v.) and delineated the chemokines and infiltrating peripheral immune cells in the brains of infected mice. The CNS expression of chemokines, Ccl2, Ccl3, and Ccl5, and their receptors, Ccr2 or Ccr5, was significantly up-regulated after JEV infection and was associated with the degree of JE pathogenesis. Moreover, JEV infection resulted in the migration of a large number of CD8~+T cells into the CNS. In the brains of JEV-infected mice, infiltrating CD8~+T cells expressed CCR2 and CCR5 and were found to comprise mainly effector T cells(CD44~+CD62 L~-). JEV infection dramatically enhanced the expression of programmed death 1(PD-1) on infiltrating CD8~+T cells in the brain, as compared to that on peripheral CD8~+T cells in the spleen. This effect was more pronounced on infiltrating CCR2~+CD8~+T cells than on CCR2-CD8~+T cells. In conclusion,we identified a new subset of CD8~+T cells(PD1~+CCR2~+CD8~+T cells) present in the CNS of mice during acute JEV infection. These CD8~+T cells might play a role in JE pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号