首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4(+)CD25(+) regulatory T (T(reg)) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to T(reg) cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by T(reg) cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of autoimmunity.  相似文献   

2.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

3.
Human filarial parasites cause chronic infection associated with long-term down-regulation of the host's immune response. We show here that CD4+ T cell regulation is the main determinant of parasite survival. In a laboratory model of infection, using Litomosoides sigmodontis in BALB/c mice, parasites establish for >60 days in the thoracic cavity. During infection, CD4+ T cells at this site express increasing levels of CD25, CTLA-4, and glucocorticoid-induced TNF receptor family-related gene (GITR), and by day 60, up to 70% are CTLA-4(+)GITR(high), with a lesser fraction coexpressing CD25. Upon Ag stimulation, CD4(+)CTLA-4(+)GITR(high) cells are hyporesponsive for proliferation and cytokine production. To test the hypothesis that regulatory T cell activity maintains hyporesponsiveness and prolongs infection, we treated mice with Abs to CD25 and GITR. Combined Ab treatment was able to overcome an established infection, resulting in a 73% reduction in parasite numbers (p < 0.01). Parasite killing was accompanied by increased Ag-specific immune responses and markedly reduced levels of CTLA-4 expression. The action of the CD25(+)GITR+ cells was IL-10 independent as in vivo neutralization of IL-10R did not restore the ability of the immune system to kill parasites. These data suggest that regulatory T cells act, in an IL-10-independent manner, to suppress host immunity to filariasis.  相似文献   

4.
We demonstrate diverse roles of IFN-gamma in the induction and regulation of immune-mediated inflammation using a transfer model of autoimmune diabetes. The diabetogenic CD4(+)BDC2.5 (BDC) T cell clone upon transfer into NOD.scid mice induced destruction of islets of Langerhans leading to diabetes. Administration of a neutralizing Ab to IFN-gamma (H22) resulted in long-term protection (LTP) from diabetes, with inflammation but persistence of a significant, albeit decreased, number of beta cells. BDC T cells were a mixture of cells expressing high, intermediate, and low levels of the TCR. Clonotype(low) BDC T cells were required for LTP. Furthermore, islet-infiltrating leukocytes in the LTP mice contained Foxp3(+)CD4 T cells. Islet inflammation in both diabetic and LTP mice was characterized by heavy infiltration of macrophages. Gene expression profiles indicated that macrophages in diabetic mice were M1 type, while LTP mice contained M2 differentiated. The LTP was abolished if mice were treated with either Ab-depleting CD4 T cells or a neutralizing Ab to CTLA-4, in this case, only at a late stage. Neutralization of IL-10, TGF-beta, glucocorticoid-induced TNF receptor (GITR), or CD25 had no effect. Transfer of only clonotype(high)-expressing BDC T cells induced diabetes; in contrast, H22 Abs did not inhibit diabetes. While clonotype(high) T cells induced diabetes even when IFN-gamma was neutralized, paradoxically there was reduced inflammation and no diabetes if host myeloid cells lacked IFN-gamma receptor. Hence, using monoclonal CD4 T cells, IFN-gamma can have a wide diversity of roles, depending on the setting of the immune process.  相似文献   

5.
The glucocorticoid-induced TNFR (GITR) is expressed at high levels on resting CD4(+)CD25(+) T regulatory (T(R)) cells and regulates their suppressive phenotype. Accordingly, we show that anti-GITR mAb treatment of SJL mice with proteolipid protein 139-151-induced experimental autoimmune encephalomyelitis significantly exacerbated clinical disease severity and CNS inflammation, and induced elevated levels of Ag-specific T cell proliferation and cytokine production. Interestingly, prior depletion of T(R) cells failed to result in exacerbated experimental autoimmune encephalomyelitis suggesting alternative targets for the anti-GITR mAb treatment. Importantly, naive CD4(+)CD25(-) T cells up-regulated GITR expression in an activation-dependent manner and anti-GITR mAb treatment enhanced the level of CD4(+) T cell activation, proliferation, and cytokine production in the absence of T(R) cells both in vivo and in vitro. Taken together, these findings suggest a dual functional role for GITR as GITR cross-linking both inactivates T(R) cells and increases CD4(+)CD25(-) T cell effector function, thus enhancing T cell immunity.  相似文献   

6.
Glucocorticoid-induced TNF receptor family related protein (GITR) is a member of the TNFR superfamily. Previous studies have shown that in vivo administration of a GITR agonistic Ab (DTA-1) is able to overcome tolerance and induce tumor rejection in several murine syngeneic tumor models. However, little is known about the in vivo targets and the mechanisms of how this tolerance is overcome in a tumor-bearing host, nor is much known about how the immune network is regulated to achieve this antitumor response. In this study, we demonstrate that the in vivo ligation of GITR on CD4(+) effector T cells renders them refractory to suppression by regulatory T (T(reg)) cells in the CT26 tumor-bearing mouse. GITR engagement on T(reg) cells does not appear to directly abrogate their suppressive function; rather, it increases the expansion of T(reg) cells and promotes IL-10 production, a cytokine important for their suppressive function. Moreover, CD4(+) effector T cells play a crucial role in mediating DTA-1-induced immune activation and expansion of CD8(+), NK, and B cells in the tumor-draining lymph nodes. This includes increased CD69 expression on all of these subsets. In addition, NK and tumor-specific CD8(+) T cells are generated that are cytolytic, which show increased intracellular IFN-gamma production and CD107a mobilization, the latter a hallmark of cytolytic activities that lead to tumor killing.  相似文献   

7.
Glucocorticoid-induced TNF receptor family related protein (GITR) is present on many different cell types. Previous studies have shown that in vivo administration of an anti-GITR agonist mAb (DTA-1) inhibits regulatory T cells (Treg)-dependent suppression and enhances T cell responses. In this study, we show that administration of DTA-1 induces >85% tumor rejection in mice challenged with B16 melanoma. Rejection requires CD4+, CD8+, and NK1.1+ cells and is dependent on IFN-gamma and Fas ligand and independent of perforin. Depletion of Treg via anti-CD25 treatment does not induce B16 rejection, whereas 100% of the mice depleted of CD25+ cells and treated with DTA-1 reject tumors, indicating a predominant role of GITR on effector T cell costimulation rather than on Treg modulation. T cells isolated from DTA-1-treated mice challenged with B16 are specific against B16 and several melanoma differentiation Ags. These mice develop memory against B16, and a small proportion of them develop mild hypopigmentation. Consistent with previous studies showing that GITR stimulation increases Treg proliferation in vitro, we found in our model that GITR stimulation expanded the absolute number of FoxP3+ cells in vivo. Thus, we conclude that overall, GITR stimulation overcomes self-tolerance/ignorance and enhances T cell-mediated antitumor activity with minimal autoimmunity.  相似文献   

8.
Glucocorticoid-induced tumor necrosis receptor (GITR) has been implicated in regulation of T cell suppression by CD25(+)CD4(+) regulatory T cells (Tregs). We isolated a cDNA encoding GITR ligand (GITRL) from mouse endothelioma cells. When stably expressed in HEK293 cells, its specific interaction with GITR was confirmed by flow cytometry with the use of GITR-Fc. The interaction was greatly diminished by the addition of soluble GITRL. Consistent with this, soluble GITRL bound to the cell surface of the GITR-expressing HEK293 cells. Coexpression of GITR with GITRL or stimulation of the GITR-expressing cells with soluble GITRL led to activation of NF-kappaB, which was significantly reduced by anti-GITR. More importantly, GITRL was expressed by both immature and mature dendritic cells, suggesting that the interaction between GITR and GITRL may contribute to immune regulation of Tregs by dendritic cells. This isolated TNFRL represents a bona fide GITRL whose presence has been elusive until this time.  相似文献   

9.
The glucocorticoid-induced TNF receptor (GITR), which is a member of the TNF receptor family, is expressed preferentially at high levels on CD25+CD4+ regulatory T cells and plays a key role in the peripheral tolerance that is mediated by these cells. GITR is also expressed on conventional CD4+ and CD8+ T cells, and its expression is enhanced rapidly after activation. In this report we show that the GITR provides a potent costimulatory signal to both CD25+ and CD25- CD4+ T cells. GITR-mediated stimulation induced by anti-GITR mAb DTA-1 or GITR ligand transfectants efficiently augmented the proliferation of both CD25-CD4+ and CD25+CD4+ T cells under the limited dose of anti-CD3 stimulation. The augmentation of T cell activation was further confirmed by the enhanced cell cycle progression; early induction of the activation Ags, CD69 and CD25; cytokine production, such as IL-2, IFN-gamma, IL-4, and IL-10; anti-CD3-induced redirected cytotoxicity; and intracellular signaling, assessed by translocation of NF-kappaB components. GITR costimulation showed a potent ability to produce high amounts of IL-10, which resulted in counter-regulation of the enhanced proliferative responses. Our results highlight evidence that GITR acts as a potent and unique costimulator for an early CD4+ T cell activation.  相似文献   

10.
Glucocorticoid-induced tumor necrosis factor receptor (TNFR) (GITR) family-related gene is a member of the TNFR super family. GITR works as one of the immunoregulatory molecule on CD4(+) regulatory T cells and has an important role on cell survival or cell death in CD4(+) T cells. Little is known about the expression of GITR on human CD8(+) T cells on antigen-specific and non-specific activation. Here, we report that expression of GITR on human CD8(+) T cells on T-cell receptor (TCR) (anti-CD3)-mediated stimulation is dependent on the JNK pathway. The activation of CD8(+) T cells was measured by the expression of IL-2 receptor-α (CD25), GITR and by IFN-γ production upon re-stimulation with anti-CD3 antibody. We studied the signaling pathway of such inducible expression of GITR on CD8(+) T cells. We found that a known JNK-specific inhibitor, SP600125, significantly down-regulates GITR expression on anti-CD3 antibody-mediated activated CD8(+) T cells by limiting JNK phosphorylation. Subsequently, after stimulation of the CD8(+) cells, we tested for the production of IFN-γ by the activated cells following restimulation with the same stimulus. It appears that the expression of GITR on activated human CD8(+) T cells might also be regulated through the JNK pathway when the activation is through TCR stimulation. Therefore, GITR serves as an activation marker on activated CD8(+) cells and interference with JNK phosphorylation, partially or completely, by varying the doses of SP600125 might have implications in CD8(+) cytotoxic T cell response in translational research.  相似文献   

11.
CD28 is well characterized as a costimulatory molecule in T cell activation. Recent evidences indicate that TNFR superfamily members, including glucocorticoid-induced TNFR-related protein (GITR), act as costimulatory molecules. In this study, the relationship between GITR and CD28 has been investigated in murine CD8(+) T cells. When suboptimal doses of anti-CD3 Ab were used, the absence of GITR lowered CD28-induced activation in these cells whereas the lack of CD28 did not affect the response of CD8(+) T cells to GITR costimulus. In fact, costimulation of CD28 in anti-CD3-activated GITR(-/-) CD8(+) T cells resulted in an impaired increase of proliferation, impaired protection from apoptosis, and an impaired rise of activation molecules such as IL-2R, IL-2, and IFN-gamma. Most notably, CD28-costimulated GITR(-/-) CD8(+) T cells revealed lower NF-kappaB activation. As a consequence, up-regulation of Bcl-x(L), one of the major target proteins of CD28-dependent NF-kappaB activation, was defective in costimulated GITR(-/-) CD8(+) T cells. What contributed to the response to CD28 ligation in CD8(+) T cells was the early up-regulation of GITR ligand on the same cells, the effect of which was blocked by the addition of a recombinant GITR-Fc protein. Our results indicate that GITR influences CD8(+) T cell response to CD28 costimulation, lowering the threshold of CD8(+) T cell activation.  相似文献   

12.
Inflammatory cytokines such as IFN-gamma and TNF produced by Ag-stimulated CD4(+) and CD8(+) T cells are important in defense against microbial infection. However, production of these cytokines must be tightly regulated to prevent immunopathology. Previous studies, conducted with BALB/c mice, have suggested that 1) CD8(+) T cells maintain IFN-gamma production but transiently produce TNF in the continued presence of Ag and 2) lymphocytic choriomeningitis virus-specific and in vitro-propagated effector CD8(+) T cells could rapidly cycle IFN-gamma production ON/OFF/ON in response to Ag exposure, removal, and re-exposure. In contrast with CD8(+) T cells, our results show that Listeria monocytogenes-specific CD4(+) T cells from C57BL/6 mice rapidly initiate (ON cycling) and maintain production of both IFN-gamma and TNF in the continued presence of Ag. Upon Ag removal, production of both cytokines rapidly ceases (OFF cycling). However, if the initial stimulation was maximal, Ag-specific CD4(+) T cells were unable to reinitiate cytokine production after a second Ag exposure. Furthermore, L. monocytogenes-specific CD8(+) T cells in the same mice and lymphocytic choriomeningitis virus-specific CD8(+) T cells in BALB/c mice also underwent ON/OFF cycling, but if the initial Ag stimulus was maximal, they could not produce IFN-gamma after Ag re-exposure. As the initial Ag dose was reduced, the number of cells producing cytokine in response to the second Ag exposure exhibited a corresponding increase. However, T cells that were marked for IFN-gamma secretion during the first stimulation did not contribute cytokine production during the second stimulation. Thus, T cells are not able to undergo rapid ON/OFF/ON cytokine cycling in vitro in response to Ag.  相似文献   

13.
Contact hypersensitivity (CHS) is a T cell-mediated, Ag-specific skin inflammation induced by skin exposure to haptens in sensitized individuals. Th1/T cytotoxic 1 cells are effector cells of CHS, whereas Th2/T regulatory CD4(+) T cells have down-regulating properties. We have previously shown that CHS to 2,4-dinitrofluorobenzene is mediated by specific CD8(+) effector cells, whose cytolytic activity is mandatory for induction of skin inflammation. In this study, using immunohistochemistry and RT-PCR analysis, we show that CD8(+) T cells are rapidly recruited into the skin at the site of hapten challenge before the onset of clinical and histological signs of skin inflammation. This early CD8(+) T cell recruitment is concomitant with: 1) transient IFN-gamma mRNA expression suggesting local activation of effector cells; and 2) induction of keratinocyte (KC) apoptosis which gradually increased to a maximum at the peak of the CHS response. Alternatively, skin infiltration of CD4(+) T cells occurred later and coincided with the peak of the CHS reaction and the beginning of the resolution of skin inflammation. Mice deficient in CD8(+) T cells did not develop CHS, whereas mice deficient in CD4(+) T cells developed an enhanced inflammatory response with increased numbers of CD8(+) T cells recruited in the skin associated with massive KC apoptosis. These data show that CHS is due to the early and selective recruitment in the skin of CD8(+) T cytotoxic 1 effector cells responsible for KC apoptosis.  相似文献   

14.
Induction of a chronic eczema is a most efficient therapy for alopecia areata (AA). We had noted a reduction in regulatory T cells during AA induction and wondered whether regulatory T cells may become recruited or expanded during repeated skin sensitization or whether additional regulatory cells account for hair regrowth. AA could not be cured by the transfer of CD4(+)CD25(high) lymph node cells from mice repeatedly treated with a contact sensitizer. This obviously is a consequence of a dominance of freshly activated cells as compared with regulatory CD4(+)CD25(+) T cells. Instead, a population of Gr-1(+)CD11b(+) cells was significantly increased in skin and spleen of AA mice repeatedly treated with a contact sensitizer. Gr-1(+)CD11b(+) spleen cells mostly expressed CD31. Expression of several proinflammatory cytokines as well as of the IFN-gamma receptor and the TNF receptor I were increased. Particularly in the skin, Gr-1(+) cells expressed several chemokines and CCR8 at high levels. Gr-1(+)CD11b(+) cells most potently suppressed AA effector cell proliferation in vitro and promoted partial hair regrowth in vivo. When cocultured with CD4(+) or CD8(+) cells from AA mice, the Gr-1(+)CD11b(+) cells secreted high levels of NO. However, possibly due to high level Bcl-2 protein expression in AA T cells, apoptosis induction remained unaltered. Instead, zeta-chain expression was strongly down-regulated, which was accompanied by a decrease in ZAP70 and ERK1/2 phosphorylation. Thus, a chronic eczema supports the expansion and activation of myeloid suppressor cells that, via zeta-chain down-regulation, contribute to autoreactive T cell silencing in vitro and in vivo.  相似文献   

15.
Barblu L  Herbeuval JP 《PloS one》2012,7(3):e32874
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.  相似文献   

16.
Accumulating evidences support that CD4(+)CD25(high) T regulatory (Treg) cells play an essential role in controlling and preventing autoimmunity. Paradoxically, RA patients have elevated numbers of circulating CD4(+)CD25(high) T cells, however, the inflammation is still ongoing. Further identification of these CD4(+)CD25(high) T cells may contribute to a better understanding of underlying mechanisms. We show here that these CD4(+)CD25(high) T cells were composed of CD4(+)CD25(high)FoxP3(+) Treg cells and activated CD4(+)CD25(high)FoxP3(-) effector cells. Moreover, there were significantly more Treg cells and effector T cells expressing GITR, and more monocytes expressing GITR-L. Thus, although RA patients have elevated numbers of CD4(+)CD25(high) T cells, the suppressive function is not increased, because of the increased number of activated effector T cells. In addition, the GITR-GITR-L system was activated in RA patients, which might lead to diminish suppressive activity of Treg cells and/or lead to resistance of activated effector T cells to suppression by Treg cells, thus, contributing to the ongoing inflammation in RA patients.  相似文献   

17.
Both CD4+ and CD8+ T cells from mice infected with Mycobacterium avium suffered a high rate of apoptosis, beginning with the onset of the immune response and culminating in the loss of T cells from the tissues and loss of IFN-gamma production. Fas expression increased over the course of infection on both T cell populations, as did their susceptibility to the induction of apoptosis in vitro by anti-Fas mAb. Nevertheless, although the rate of apoptosis among CD4+ T cells from infected mice was reduced to normal levels in lpr mice with a defective Fas, CD8+ T cells were unaffected, implying that Fas/FasL interaction was not important in these cells in vivo. Conversely, over-expression of B-cell lymphoma-2 (Bcl-2), which is known to protect T cells from apoptosis signalled through the TNF receptor or due to the withdrawal of cytokines, totally protected CD8+ T cells from infected mice but had no effect on CD4+. It is of interest that these two contrasting pathways of T-cell apoptosis operate at the same time during a single infection.  相似文献   

18.
Chronic inflammation can associate with autoreactive immune responses, including CD4(+) T cell responses to self-Ags. In this paper, we show that the adipocyte-derived proinflammatory hormone leptin can affect the survival and proliferation of autoreactive CD4(+) T cells in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis. We found that myelin olygodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-specific CD4(+) T cells from C57BL/6J wild-type mice could not transfer experimental autoimmune encephalomyelitis into leptin-deficient ob/ob mice. Such a finding was associated with a reduced proliferation of the transferred MOG(35-55)-reactive CD4(+) T cells, which had a reduced degradation of the cyclin-dependent kinase inhibitor p27(kip1) and ERK1/2 phosphorylation. The transferred cells displayed reduced Th1/Th17 responses and reduced delayed-type hypersensitivity. Moreover, MOG(35-55)-reactive CD4(+) T cells in ob/ob mice underwent apoptosis that associated with a downmodulation of Bcl-2. Similar results were observed in transgenic AND-TCR- mice carrying a TCR specific for the pigeon cytochrome c 88-104 peptide. These molecular events reveal a reduced activity of the nutrient/energy-sensing AKT/mammalian target of rapamycin pathway, which can be restored in vivo by exogenous leptin replacement. These results may help to explain a link between chronic inflammation and autoimmune T cell reactivity.  相似文献   

19.
Although the anterior chamber of the eye expresses immune privilege, some ocular tumors succumb to immune rejection. Previous studies demonstrated that adenovirus-induced tumors, adenovirus type 5 early region 1 (Ad5E1), underwent immune rejection following transplantation into the anterior chamber of syngeneic mice. Intraocular tumor rejection required CD4(+) T cells, but did not require the following: 1) CD8(+) T cells, 2) B cells, 3) TNF, 4) perforin, 5) Fas ligand, or 6) NK cells. This study demonstrates that CD4(+) T cell-dependent tumor rejection does not occur in IFN-gamma-deficient mice. Ad5E1 tumor cells expressed DR5 receptor for TRAIL and were susceptible to TRAIL-induced apoptosis. Although IFN-gamma did not directly induce apoptosis of the tumor cells, it rendered them 3-fold more susceptible to TRAIL-induced apoptosis. Both CD4(+) T cells and corneal endothelial cells expressed TRAIL and induced apoptosis of Ad5E1 tumor cells. The results suggest that Ad5E1 tumor rejection occurs via TRAIL-induced apoptosis as follows: 1) tumor cells express TRAIL-R2 and are susceptible to TRAIL-induced apoptosis, 2) IFN-gamma enhances TRAIL expression on CD4(+) T cells and ocular cells, 3) IFN-gamma enhances tumor cell susceptibility to TRAIL-induced apoptosis, 4) apoptotic tumor cells are found in the eyes of rejector mice, but not in the eyes of IFN-gamma knockout mice that fail to reject intraocular tumors, 5) CD4(+) T cells and corneal endothelial cells express TRAIL and induce apoptosis of tumor cells, and 6) apoptosis induced by either CD4(+) T cells or corneal cells can be blocked with anti-TRAIL Ab.  相似文献   

20.
The glucocorticoid-induced TNF-related gene receptor (GITR) is the newest member of the costimulatory molecule family and is expressed on both resting CD4+CD25+ regulatory T (T(R)) cells and activated CD4+ T cells. We investigated the endogenous mechanisms that regulate GITR expression on both T(R) and CD4+ T cells, as well as the functional interaction between GITR and other costimulatory molecules. CD28 stimulation increased GITR expression on both T(R) and CD4+ T cells via IL-2-dependent mechanisms. In addition, ligation of GITR and/or CD28 increased the level of CD4+ T cell proliferation and effector function under both APC-dependent and -independent conditions, suggesting that these costimulatory molecules cooperate to regulate CD4+ T cell activation and function by directly signaling to the CD4+ T cell. Thus, GITR may serve opposing functional roles on CD4+ T(R) and effector cells and alterations in GITR expression and/or function may tip the balance between immune tolerance and effector function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号