首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tzeng TF  Lo CY  Cheng JT  Liu IM 《Life sciences》2007,80(16):1508-1516
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.  相似文献   

2.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

3.
Exercise training has been found to reduce the muscle insulin resistance of the obese Zucker rat (fa/fa). The purpose of the present study was to determine whether this reduction in muscle insulin resistance was associated with an improvement in the glucose transport process and if it was fiber-type specific. Rats were randomly assigned to a sedentary or training group. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 days/wk, for 6-8 wk. The rate of muscle glucose transport was assessed in the absence of insulin and in the presence of a physiological (0.15 mU/ml), a submaximal (1.50 mU/ml), and a maximal (15.0 mU/ml) insulin concentration by determining the rate of 3-O-methyl-D-glucose (3-OMG) accumulation during hindlimb perfusion. The average 3-OMG transport rate of the red gastrocnemii (fast-twitch oxidative-glycolytic fibers) was significantly higher in the trained compared with the sedentary obese rats in the absence of insulin and in the presence of the three insulin concentrations. Significant improvements in 3-OMG transport were also observed in the plantarii (mixed fibers) of trained obese rats in the presence of 0, 0.15, and 15.0 mU/ml insulin. Training appeared to have little effect on the insulin-stimulated 3-OMG transport of the soleus (slow-twitch oxidative fibers) or white gastrocnemius (fast-twitch glycolytic fibers). The results suggest that the improvement in the muscle insulin resistance of the obese Zucker rat after moderate endurance training was associated with an improvement in the glucose transport process but that it was fiber-type specific.  相似文献   

4.
Exercise training (ET) or the antioxidant R(+)-alpha-lipoic acid (R-ALA) individually increases insulin action in the insulin-resistant obese Zucker rat. The purpose of the present study was to determine the interactions of ET and R-ALA on insulin action and oxidative stress in skeletal muscle of the obese Zucker rat. Animals either remained sedentary, received R-ALA (30 mg x kg body wt(-1) x day(-1)), performed ET (treadmill running), or underwent both R-ALA treatment and ET for 6 wk. During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose (26-32%) and insulin (29-30%) responses compared with sedentary controls. R-ALA alone decreased (19%) the glucose-insulin index (indicative of increased insulin sensitivity), and this parameter was reduced (48-52%) to the greatest extent in the ET and combined treatment groups. ET or R-ALA individually increased insulin-mediated glucose transport activity in isolated epitrochlearis (44-48%) and soleus (37-57%) muscles. The greatest increases in insulin action in these muscles (80 and 99%, respectively) were observed in the combined treatment group. Whereas the improvement in insulin-mediated glucose transport in soleus due to R-ALA was associated with decreased protein carbonyl levels (an index of oxidative stress), improvement because of ET was associated with decreased protein carbonyls as well as enhanced GLUT-4 protein. However, there was no interactive effect of ET and R-ALA on GLUT-4 protein or protein carbonyl levels. These results indicate that ET and R-ALA interact in an additive fashion to improve insulin action in insulin-resistant skeletal muscle. Because the further improvement in muscle glucose transport in the combined group was not associated with additional upregulation of GLUT-4 protein or a further reduction in oxidative stress, the mechanism for this interaction must be due to additional, as yet unidentified, factors.  相似文献   

5.
Recent studies have suggested that sensory nerves may influence insulin secretion and action. The present study investigated the effects of resiniferatoxin (RTX) inactivation of sensory nerves (desensitization) on oral glucose tolerance, insulin secretion and whole body insulin sensitivity in the glucose intolerant, hyperinsulinemic, and insulin-resistant obese Zucker rat. After RTX treatment (0.05 mg/kg RTX sc given at ages 8, 10, and 12 wk), fasting plasma insulin was reduced (P < 0.0005), and oral glucose tolerance was improved (P < 0.005). Pancreas perfusion showed that baseline insulin secretion (7 mM glucose) was lower in RTX-treated rats (P = 0.01). Insulin secretory responsiveness to 20 mM glucose was enhanced in the perfused pancreas of RTX-treated rats (P < 0.005) but unaffected in stimulated, isolated pancreatic islets. At the peak of spontaneous insulin resistance in the obese Zucker rat, insulin sensitivity was substantially improved after RTX treatment, as evidenced by higher glucose infusion rates (GIR) required to maintain euglycemia during a hyperinsulinemic euglycemic (5 mU.kg(-1).min(-1)) clamp (GIR(60-120min): 5.97 +/- 0.62 vs. 11.65 +/- 0.83 mg.kg(-1).min(-1) in RTX-treated rats, P = 0.003). In conclusion, RTX treatment and, hence, sensory nerve desensitization of adult male obese Zucker rats improved oral glucose tolerance by enhancing insulin secretion, and, in particular, by improving insulin sensitivity.  相似文献   

6.
Our objective was to compare the effects of in vivo insulin on skeletal muscle glycogen synthase (GS) activity in normal (NGT) vs. impaired glucose-tolerant (IGT) obese postmenopausal women and to determine whether an increase in insulin activation of GS is associated with an improvement in insulin sensitivity (M) following calorie restriction (CR) and/or aerobic exercise plus calorie restriction (AEX + CR) in women with NGT and IGT. We did a longitudinal, clinical intervention study of CR compared with AEX + CR. Overweight and obese women, 49-76 yr old, completed 6 mo of CR (n = 46) or AEX + CR (n = 50) with Vo(2?max), body composition, and glucose tolerance testing. Hyperinsulinemic euglycemic (80 mU·m(-2)·min(-1)) clamps (n = 73) and skeletal muscle biopsies (before and during clamp) (n = 58) were performed before and after the interventions (n = 50). After 120 min of hyperinsulinemia during the clamp, GS fractional activity and insulin's effect to increase GS fractional activity (insulin - basal) were significantly lower in IGT vs. NGT (P < 0.01) at baseline. GS total activity increased during the clamp in NGT (P < 0.05), but not IGT, at baseline. CR and AEX + CR resulted in a significant 8% weight loss with reductions in total fat mass, visceral fat, subcutaneous fat, and intramuscular fat. Overall, M increased (P < 0.01), and the change in M (postintervention - preintervention) was associated with the change in insulin-stimulated GS fractional activity (partial r = 0.44, P < 0.005). In IGT, the change (postintervention - preintervention) in insulin-stimulated GS total activity was greater following AEX + CR than CR alone (P < 0.05). In IGT, insulin-stimulated GS-independent (P < 0.005) and fractional activity (P = 0.06) increased following AEX + CR. We conclude that the greatest benefits at the whole body and cellular level (insulin activation of GS) in older women at highest risk for diabetes are derived from a lifestyle intervention that includes exercise and diet.  相似文献   

7.
Skeletal muscle arterioles from obese Zucker rats (OZR) exhibit oxidant stress-based alterations in reactivity, enhanced alpha-adrenergic constriction, and reduced distensibility vs. microvessels of lean Zucker rats (LZR). The present study determined the impact of these alterations for perfusion and performance of in situ skeletal muscle during periods of elevated metabolic demand. During bouts of isometric tetanic contractions, fatigue of in situ gastrocnemius muscle of OZR was increased vs. LZR; this was associated with impaired active hyperemia. In OZR, vasoactive responses of skeletal muscle arterioles from the contralateral gracilis muscle were impaired, due in part to elevated oxidant tone; reactivity was improved after treatment with polyethylene glycol-superoxide dismutase (PEGSOD). Arterioles of OZR also exhibited increased alpha-adrenergic sensitivity, which was abolished by treatment with phentolamine (10-5 M). Intravenous infusion of phentolamine (10 mg/kg) or PEG-SOD (2,000 U/kg) in OZR altered neither fatigue rates nor active hyperemia from untreated levels; however, combined infusion improved performance and hyperemia, although not to levels in LZR. Microvessel density in the contralateral gastrocnemius muscle, determined via histological analyses, was reduced by approximately 25% in OZR vs. LZR, while individual arterioles from the contralateral gracilis muscle demonstrated reduced distensibility. These data suggest that altered arteriolar reactivity contributes to reduced muscle performance and active hyperemia in OZR. Further, despite pharmacological improvements in arteriolar reactivity, reduced skeletal muscle microvessel density and arteriolar distensibility also contribute substantially to reduced active hyperemia and potentially to impaired muscle performance.  相似文献   

8.
The purpose of this investigation was to test an amino acid mixture on glucose tolerance in obese Zucker rats [experiment (Exp)-1] and determine whether differences in blood glucose were associated with alterations in muscle glucose uptake [experiment (Exp)-2]. Exp-1 rats were gavaged with either carbohydrate (OB-CHO), carbohydrate plus amino acid mixture (OB-AA-1), carbohydrate plus amino acid mixture with increased leucine concentration (OB-AA-2) or water (OB-PLA). The glucose response in OB-AA-1 and OB-AA-2 were similar, and both were lower compared to OB-CHO. This effect of the amino acid mixtures did not appear to be solely attributable to an increase in plasma insulin. Rats in Exp-2 were gavaged with carbohydrate (OB-CHO), carbohydrate plus amino acid mixture (OB-AA-1) or water (OB-PLA). Lean Zuckers were gavaged with carbohydrate (LN-CHO). Fifteen minutes after gavage, a radiolabeled glucose analog was infused through a catheter previously implanted in the right jugular vein. Blood glucose was significantly lower in OB-AA-1 compared to OB-CHO while the insulin responses were similar. Glucose uptake was greater in OB-AA-1 compared with OB-CHO, and similar to that in LN-CHO in red gastrocnemius muscle (5.15 ± 0.29, 3.8 ± 0.27, 5.18 ± 0.34 µmol/100 g/min, respectively). Western blot analysis showed that Akt substrate of 160 kDa (AS160) phosphorylation was enhanced for OB-AA-1 and LN-CHO compared to OB-CHO. These findings suggest that an amino acid mixture improves glucose tolerance in an insulin resistant model and that these improvements are associated with an increase in skeletal muscle glucose uptake possibly due to improved intracellular signaling.  相似文献   

9.
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway.  相似文献   

10.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

11.
Acute exercise and training increase insulin action in skeletal muscle, but the mechanism responsible for this effect is unknown. Activation of the insulin receptor initiates signaling through both the phosphatidylinositol (PI) 3-kinase and the mitogen-activated protein kinase [MAPK, also referred to as extracellular signal-regulated kinases (ERK1/2)] pathways. Acute exercise has no effect on the PI3-kinase pathway signaling elements but does activate the MAPK pathway, which may play a role in the adaptation of muscle to exercise. It is unknown whether training produces a chronic effect on basal activity or insulin response of the MAPK pathway. The present study was undertaken to determine whether exercise training improves the activity of the MAPK pathway or its response to insulin in obese Zucker rats, a well-characterized model of insulin resistance. To accomplish this, obese Zucker rats were studied by using the hindlimb perfusion method with or without 7 wk of treadmill training. Activation of the MAPK pathway was determined in gastrocnemius muscles exposed in situ to insulin. Compared with lean Zucker rats, untrained obese Zucker rats had reduced basal and insulin-stimulated activities of ERK2 and its downstream target p90 ribosomal S6 kinase (RSK2). Seven weeks of training significantly increased basal and insulin-stimulated ERK2 and RSK2 activities, as well as insulin stimulation of MAPK kinase activity. This effect was maintained for at least 96 h in the case of ERK2. The training-induced increase in basal ERK2 activity was correlated with the increase in citrate synthase activity. Therefore, 7 wk of training increases basal and insulin-stimulated ERK2 activity. The increase in basal ERK2 activity may be related to the response of muscle to training.  相似文献   

12.
The purpose of this study was to test the hypothesis that exercise training improves microvascular function in obese Zucker rats, a model of obesity and type II diabetes. Animals were divided into four age-matched groups: lean sedentary (LS), lean exercise (LE), obese sedentary (OS), and obese exercise (OE). The exercise groups were treadmill-exercised from 5 to 11 wk of age, including a 2-wk acclimation period. Mean arterial pressure (MAP) was not significantly different between any of the groups. The OS had significantly higher mean body weight, blood glucose, insulin, IL-6, and leptin levels compared with the LS, whereas the OE had significantly lower blood glucose, insulin, and IL-6 levels compared with the OS. Functional hyperemia and endothelial-dependent vasodilation were tested in the spinotrapezius muscle using intravital microscopy. Functional hyperemia and acetylcholine (0.1 microM, 1 microM, and 10 microM) responses were significantly attenuated in OS compared with the LS, while the contraction and ACh-induced (1 microM and 10 microM) vasodilation were significantly increased in both LE and OE compared with the sedentary animals. These results suggest that exercise training can improve vascular function in this model of type II diabetes. Moreover, the impaired vasodilation observed in 11-wk-old OZR suggests that the microvascular dysfunction is not likely due to an elevated blood pressure.  相似文献   

13.
We have shown previously (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ. J Appl Physiol 91: 145-153, 2001) that the antioxidant R-(+)-alpha-lipoic acid (R-ALA), combined with endurance exercise training (ET), increases glucose transport in insulin-resistant skeletal muscle in an additive fashion. The purpose of the present study was to investigate possible cellular mechanisms responsible for this interactive effect. We evaluated the effects of R-ALA alone, ET alone, or R-ALA and ET in combination on insulin-stimulated glucose transport, protein expression, and functionality of specific insulin-signaling factors in soleus muscle of obese Zucker (fa/fa) rats. Obese animals remained sedentary, received R-ALA (30 mg.kg body wt(-1).day(-1)), performed ET (daily treadmill running for < or =60 min), or underwent both R-ALA treatment and ET for 15 days. R-ALA or ET individually increased (P < 0.05) insulin-mediated (5 mU/ml) glucose transport (2-deoxyglucose uptake) in soleus muscle by 45 and 68%, respectively, and this value was increased to the greatest extent (124%) in the combined treatment group. Soleus insulin receptor substrate (IRS)-1 protein was significantly increased by R-ALA alone (30%) or ET alone (31%), and a further enhancement (55%) was observed after the combination treatment in the obese animals. Enhanced levels of IRS-1 protein expression after individual or combined interventions were significantly correlated with insulin action on glucose transport activity (r = 0.597, P = 0.0055). Similarly, insulin-mediated IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase was increased by R-ALA (317%) and ET (319%) and to the greatest extent (435%) (all P < 0.05) by the combination treatment. These results indicate that the improvements of insulin action in insulin-resistant skeletal muscle after R-ALA or ET, alone and in combination, were associated with increases in IRS-1 protein expression and IRS-1 associated with p85.  相似文献   

14.
Yu R  Yi T  Xie S  Hong A 《Peptides》2008,29(8):1347-1353
Maxadilan and its truncated variant, M65, are agonist and antagonist specific, respectively, for the PAC1 receptor. PAC1 is the specific receptor for the pituitary adenylate cyclase-activating peptide (PACAP), which is not shared by vasoactive intestinal peptide (VIP). PACAP is a ubiquitous peptide of the glucagon superfamily that is involved in glucose homeostasis and regulation of insulin secretion. This study employed the recombinant maxadilan and M65 to evaluate the PAC1 receptor-mediated effects on energy metabolism using NIH mice. First, the acute effect of maxadilan-induced hyperglycemia was blocked by M65. In long-term studies, NIH mice were given daily intraperitoneal injections with maxadilan, M65, or vehicle for 21 days. Maxadilan suppressed feeding and enhanced water intake significantly for the first several days. After that period, maxadilan treatment continued to promote food and water intake. Long-term administration of maxadilan led to an increase in body weight (P<0.01), decrease in body fat (P<0.01), down-regulation of basal plasma glucose (P<0.01), upregulation of basal plasma insulin (P<0.01) and improved glucose tolerance (P<0.01) and insulin sensitivity (P<0.01). An elevation in plasma LDL (P<0.01) was also observed in the maxadilan group. However, M65 displayed no significant adverse effects on the aforementioned parameters except basal plasma glucose (P<0.05). The significant changes induced by maxadilan indicate that the PAC1 receptor plays multiple key roles in carbohydrate metabolism, lipid metabolism and energy homeostasis in mice.  相似文献   

15.
Glucose transport is regarded as the principal rate control step governing insulin-stimulated glucose utilization by skeletal muscle. To assess this step in human skeletal muscle, quantitative PET imaging of skeletal muscle was performed using 3-O-methyl-[11C]glucose (3-[11C]OMG) in healthy volunteers during a two-step insulin infusion [n = 8; 30 and 120 mU.min(-1).m(-2), low (LO) and high (HI)] and during basal conditions (n = 8). Positron emission tomography images were coregistered with MRI to assess 3-[11C]OMG activity in regions of interest placed on oxidative (soleus) compared with glycolytic (tibialis anterior) muscle. Insulin dose-responsive increases of 3-[11C]OMG activity in muscle were observed (P < 0.01). Tissue activity was greater in soleus than in tibialis anterior (P < 0.05). Spectral analysis identified that two mathematical components interacted to shape tissue activity curves. These two components were interpreted physiologically as likely representing the kinetics of 3-[11C]OMG delivery from plasma to tissue and the kinetics of bidirectional glucose transport. During low compared with basal, there was a sixfold increase in k3, the rate constant attributed to inward glucose transport, and another threefold increase during HI (0.012 +/- 0.003, 0.070 +/- 0.014, 0.272 +/- 0.059 min(-1), P < 0.001). Values for k3 were similar in soleus and tibialis anterior, suggesting similar kinetics for transport, but compartmental modeling indicated a higher value in soleus for k1, denoting higher rates of 3-[11C]OMG delivery to soleus than to tibialis anterior. In summary, in healthy volunteers there is robust dose-responsive insulin stimulation of glucose transport in skeletal muscle.  相似文献   

16.
We have studied the role of the insulin receptor (IR) in metabolic and growth-promoting effects of insulin on primary cultures of skeletal muscle derived from the limb muscle of IR null mice. Cultures of IR null skeletal muscle displayed normal morphology and spontaneous contractile activity. Expression of muscle-differentiating proteins was slightly reduced in myoblasts and myotubes of the IR null skeletal muscle cells, whereas that of the Na+/K+ pump appeared to be unchanged. Insulin-like growth factor receptor (IGFR) expression was higher in myoblasts from IR knockout (IRKO) than from IR wild-type (IRWT) mice but was essentially unchanged in myotubes. Expression of the GLUT-1 and GLUT-4 transporters appeared to be higher in IRKO than in IRWT myoblasts and was significantly greater in myotubes from IRKO than from IRWT cultures. Consistent with GLUT expression, both basal and insulin or insulin-like growth factor I (IGF-I)-stimulated glucose uptakes were higher in IR null skeletal myotubes than in wild-type skeletal myotubes. Interestingly, autophosphorylation of IGFR induced by insulin and IGF-I was markedly increased in IR null skeletal myotubes. These results indicate that, in the absence of IR, there is a compensatory increase in basal as well as in insulin- and IGF-I-induced glucose transport, the former being mediated via increased activation of the IGF-I receptor.  相似文献   

17.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   

18.
This study determined alterations to nitric oxide (NO)-dependent dilation of skeletal muscle arterioles from obese (OZR) versus lean Zucker rats (LZR). In situ cremaster muscle arterioles from both groups were viewed via television microscopy, and vessel dilation was measured with a video micrometer. Arteriolar dilation to acetylcholine and sodium nitroprusside was reduced in OZR versus LZR, although dilation to aprikalim was unaltered. NO-dependent flow-induced arteriolar dilation (via parallel microvessel occlusion) was attenuated in OZR, impairing arteriolar ability to regulate wall shear rate. Vascular superoxide levels, as assessed by dihydroethidine fluorescence, were elevated in OZR versus LZR. Treatment of cremaster muscles of OZR with the superoxide scavengers polyethylene glycol-superoxide dismutase and catalase improved arteriolar dilation to acetylcholine and sodium nitroprusside and restored flow-induced dilation and microvascular ability to regulate wall shear rate. These results suggest that NO-dependent dilation of skeletal muscle microvessels in OZR is impaired due to increased levels of superoxide. Taken together, these data suggest that the development of diabetes and hypertension in OZR may be associated with an impaired skeletal muscle perfusion via an elevated vascular oxidant stress.  相似文献   

19.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

20.
Exercise and insulin increase muscle glucose uptake by different mechanisms and also increase capillary recruitment, which is proposed to facilitate access for hormones and nutrients. The genetically obese Zucker rat shows impaired insulin- but not contraction-mediated glucose uptake in muscle. Recently, we have shown the genetically obese Zucker rats to have impaired insulin-mediated capillary recruitment and proposed that this contributes to the insulin resistance of muscle in vivo. Because this might imply a general loss of recruitable capillaries, we now assess responses to contraction in muscles of 18 +/- 3-wk-old lean and obese Zucker rats in vivo. Field stimulation (2 Hz, 0.1 ms) was conducted for 1 h on one leg of anesthetized instrumented rats, and measurements were made of femoral blood flow (FBF), heart rate (HR), blood pressure (BP), hindleg metabolism of 1-methylxanthine (a measure of capillary recruitment), hindleg glucose uptake (HGU), and lower leg muscle glucose uptake by 2-deoxyglucose (R'g). Lean animals (311 +/- 9 g) developed tension at 219 +/- 27 g/g muscle with no change in BP but with significant increases in HR, FBF, HGU, 1-MX metabolism, and R'g (P < 0.05), compared with nonstimulated control leans. Obese animals (469 +/- 7 g) developed tension at 265 +/- 31 g/g muscle with no change in HR or BP but with significant increases in FBF, HGU, 1-MX metabolism, and R'g (P < 0.05) compared with nonstimulated control obese rats. Muscle contraction of lean animals led to a greater increase in lower leg R'g, similar responses in HGU and 1-MX, and a smaller increase in FBF than in obese animals. A tight correlation between FBF and capillary recruitment was noted for all data (P < 0.001). It is concluded that contraction-mediated muscle capillary recruitment and glucose uptake are essentially normal in the obese Zucker rat and that control of FBF and capillary recruitment in exercise is closely linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号