首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using a multiple alignment of 175 cytochrome P450 (CYP) family 2 sequences, 20 conserved sequence motifs (CSMs) were identified with the program PCPMer. Functional importance of the CSM in CYP2B enzymes was assessed from available data on site-directed mutants and genetic variants. These analyses suggested an important role of the CSM 8, which corresponds to(187)RFDYKD(192) in CYP2B4. Further analysis showed that residues 187, 188, 190, and 192 have a very high rank order of conservation compared with 189 and 191. Therefore, eight mutants (R187A, R187K, F188A, D189A, Y190A, K191A, D192A, and a negative control K186A) were made in an N-terminal truncated and modified form of CYP2B4 with an internal mutation, which is termed 2B4dH/H226Y. Function was examined with the substrates 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC), 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone and with the inhibitors 4-(4-chlorophenyl)imidazole (4-CPI) and bifonazole (BIF). Compared with the template and K186A, the mutants R187A, R187K, F188A, Y190A, and D192A showed > or =2-fold altered substrate specificity, k(cat), K(m), and/or k(cat)/K(m) for 7-MFC and 7-EFC and 3- to 6-fold decreases in differential inhibition (IC(50,BIF)/IC(50,4-CPI)). Subsequently, these mutants displayed 5-12 degrees C decreases in thermal stability (T(m)) and 2-8 degrees C decreases in catalytic tolerance to temperature (T(50)) compared with the template and K186A. Furthermore, when R187A and D192A were introduced in CYP2B1dH, the P450 expression and thermal stability were decreased. In addition, R187A showed increased activity with 7-EFC and decreased IC(50,BIF)/IC(50,4-CPI) compared with 2B1dH. Analysis of long range residue-residue interactions in the CYP2B4 crystal structures indicated strong hydrogen bonds involving Glu(149)-Asn(177)-Arg(187)-Tyr(190) and Asp(192)-Val(194), which were significantly-reduced/abolished by the Arg(187)-->Ala and Asp(192)-->Alasubstitutions, respectively.  相似文献   

2.
Based on the X-ray crystal structures of 4-(4-chlorophenyl)imidazole (4-CPI)- and bifonazole (BIF)-bound P450 2B4, eight active site mutants at six positions were created in an N-terminal modified construct termed 2B4dH and characterized for enzyme inhibition and catalysis. I363A showed a >4-fold decrease in differential inhibition by BIF and 4-CPI (IC(50,BIF)/IC(50,4-CPI)). F296A, T302A, I363A, V367A, and V477A showed a 2-fold decreased k(cat) for 7-ethoxy-4-trifluoromethylcoumarin O-deethylation, whereas V367A and V477F showed an altered K(m). T302A, V367L, and V477A showed >4-fold decrease in total testosterone hydroxylation, whereas I363A, V367A, and V477F showed altered stereo- and regioselectivity. Interestingly, I363A showed a 150-fold enhanced k(cat)/K(m) with testosterone, and yielded a new metabolite. Furthermore, testosterone docking into three-dimensional models of selected mutants based on the 4-CPI-bound structure suggested a re-positioning of residues 363 and 477 to yield products. In conclusion, our results suggest that the 4-CPI-bound 2B4dH/H226Y crystal structure is an appropriate model for predicting enzyme catalysis.  相似文献   

3.
Cytochrome P450 (P450) 2A6 is an important human enzyme involved in the metabolism of many xenobiotic chemicals including coumarin, indole, nicotine, and carcinogenic nitrosamines. A combination of random mutagenesis and high-throughput screening was used in the analysis of P450 2A6, utilizing a fluorescent coumarin 7-hydroxylation assay. The steady-state kinetic parameters (k(cat) and Km) for coumarin 7-hydroxylation by wild-type P450 2A6 and 35 selected mutants were measured and indicated that mutants throughout the coding region can have effects on activity. Five mutants showing decreased catalytic efficiency (k(cat)/Km) were further analyzed for substrate selectivity and binding affinities and showed reduced catalytic activities for 7-methoxycoumarin O-demethylation, tert-butyl methyl ether O-demethylation, and indole 3-hydroxylation. All mutants except one (K476E) showed decreased coumarin binding affinities (and also higher Km values), indicating that this is a major basis for the decreased enzymatic activities. A recent x-ray crystal structure of P450 2A6 bound to coumarin (Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005) Nat. Struct. Mol. Biol. 12, 822-823) indicates that the recovered A481T and N297S mutations appear to be close to coumarin, suggesting direct perturbation of substrate interaction. The decreased enzymatic activity of the K476E mutant was associated with decreases both in NADPH oxidation and the reduction rate of the ferric P450 2A6-coumarin complex. The attenuation is caused in part to lower binding affinity for NADPH-P450 reductase, but the K476E mutant did not achieve the wild-type coumarin 7-hydroxylation activity even at high reductase concentrations.  相似文献   

4.
To better understand ligand-induced structural transitions in cytochrome P450 2B4, protein-ligand interactions were investigated using a bulky inhibitor. Bifonazole, a broad spectrum antifungal agent, inhibits monooxygenase activity and induces a type II binding spectrum in 2B4dH(H226Y), a modified enzyme previously crystallized in the presence of 4-(4-chlorophenyl)imidazole (CPI). Isothermal titration calorimetry and tryptophan fluorescence quenching indicate no significant burial of protein apolar surface nor altered accessibility of Trp-121 upon bifonazole binding, in contrast to recent results with CPI. A 2.3 A crystal structure of 2B4-bifonazole reveals a novel open conformation with ligand bound in the active site, which is significantly different from either the U-shaped cleft of ligand-free 2B4 or the small active site pocket of 2B4-CPI. The O-shaped active site cleft of 2B4-bifonazole is widely open in the middle but narrow at the top. A bifonazole molecule occupies the bottom of the active site cleft, where helix I is bent approximately 15 degrees to accommodate the bulky ligand. The structure also defines unanticipated interactions between helix C residues and bifonazole, suggesting an important role of helix C in azole recognition by mammalian P450s. Comparison of the ligand-free 2B4 structure, the 2B4-CPI structure, and the 2B4-bifonazole structure identifies structurally plastic regions that undergo correlated conformational changes in response to ligand binding. The most plastic regions are putative membrane-binding motifs involved in substrate access or substrate binding. The results allow us to model the membrane-associated state of P450 and provide insight into how lipophilic substrates access the buried active site.  相似文献   

5.
Structural plasticity of mammalian cytochromes P450 (CYP) has recently been explored in our laboratory and elsewhere to understand the ligand-binding promiscuity. CYP2B4 exhibits very different conformations and thermodynamic signatures in binding the small inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) versus the large bifonazole. Using four key active-site mutants (F296A, T302A, I363A, and V367L) that are involved in binding one or both inhibitors, we dissected the thermodynamic basis for the ability of CYP2B4 to bind substrates and inhibitors of different sizes and chemistry. In all cases, 1:1 binding stoichiometry was observed. The inhibitors 4-CPI, 1-(4-chlorophenyl)imidazole, and 1-(2-(benzyloxy)ethyl)imidazole bind to the mutants with a free energy difference (ΔΔG) of ∼ 0.5 to 1 kcal/mol compared with the wild type but with a large entropy-enthalpy compensation of up to 50 kcal/mol. The substrate testosterone binds to all four mutants with a ΔΔG of ∼ 0.5 kcal/mol but with as much as 40 kcal/mol of entropy-enthalpy compensation. In contrast, benzphetamine binding to V367L and F296A is accompanied by a ΔΔG of ∼ 1.5 and 3 kcal/mol, respectively. F296A, I363A, and V367L exhibit very different benzphetamine metabolite profiles, indicating the different substrate-binding orientations in the active site of each mutant. Overall, the findings indicate that malleability of the active site allows mammalian P450s to exhibit a high degree of thermodynamic fidelity in ligand binding.  相似文献   

6.
The amino acid residues essential for the enzymatic activity of bacteriophage T5 deoxyribonucleoside monophosphate kinase were determined using a computer model of the enzyme active site. By site-directed mutagenesis, cloning, and gene expression in E. coli, a series of proteins were obtained with single substitutions of the conserved active site amino acid residues—S13A, D16N, T17N, T17S, R130K, K131E, Q134A, G137A, T138A, W150F, W150A, D170N, R172I, and E176Q. After purification by ion exchange and affine chromatography electrophoretically homogeneous preparations were obtained. The study of the enzymatic activity with natural acceptors of the phosphoryl group (dAMP, dCMP, dGMP, and dTMP) demonstrated that the substitutions of charged amino acid residues of the NMP binding domain (R130, R172, D170, and E176) caused nearly complete loss of enzymatic properties. It was found that the presence of the OH-group at position 17 was also important for the catalytic activity. On the basis of the analysis of specific activity variations we assumed that arginine residues at positions 130 and 172 were involved in the binding to the donor γ-phosphoryl and acceptor α-phosphoryl groups, as well as the aspartic acid residue at position 16 of the ATP-binding site (P-loop), in the binding to some acceptors, first of all dTMP. Disproportional changes in enzymatic activities of partially active mutants, G137A, T138A, T17N, Q134A, S13A, and D16N, toward different substrates may indicate that different amino acid residues participate in the binding to various substrates.  相似文献   

7.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

8.
We investigated the functional roles of putative active site residues in Escherichia coli CheA by generating nine site-directed mutants, purifying the mutant proteins, and quantifying the effects of those mutations on autokinase activity and binding affinity for ATP. We designed these mutations to alter key positions in sequence motifs conserved in the protein histidine kinase family, including the N box (H376 and N380), the G1 box (D420 and G422), the F box (F455 and F459), the G2 box (G470, G472, and G474), and the "GT block" (T499), a motif identified by comparison of CheA to members of the GHL family of ATPases. Four of the mutant CheA proteins exhibited no detectable autokinase activity (Kin(-)). Of these, three (N380D, D420N, and G422A) exhibited moderate decreases in their affinities for ATP in the presence or absence of Mg(2+). The other Kin(-) mutant (G470A/G472A/G474A) exhibited wild-type affinity for ATP in the absence of Mg(2+), but reduced affinity (relative to that of wild-type CheA) in the presence of Mg(2+). The other five mutants (Kin(+)) autophosphorylated at rates slower than that exhibited by wild-type CheA. Of these, three mutants (H376Q, D420E, and F455Y/F459Y) exhibited severely reduced k(cat) values, but preserved K(M)(ATP) and K(d)(ATP) values close to those of wild-type CheA. Two mutants (T499S and T499A) exhibited only small effects on k(cat) and K(M)(ATP). Overall, these results suggest that conserved residues in the N box, G1 box, G2 box, and F box contribute to the ATP binding site and autokinase active site in CheA, while the GT block makes little, if any, contribution. We discuss the effects of specific mutations in relation to the three-dimensional structure of CheA and to binding interactions that contribute to the stability of the complex between CheA and Mg(2+)-bound ATP in both the ground state and the transition state for the CheA autophosphorylation reaction.  相似文献   

9.
The crystal structure of P450 2B4 bound with 1-(4-chlorophenyl)imidazole (1-CPI) has been determined to delineate the structural basis for the observed differences in binding affinity and thermodynamics relative to 4-(4-chlorophenyl)imidazole (4-CPI). Compared with the previously reported 4-CPI complex, there is a shift in the 1-CPI complex of the protein backbone in helices F and I, repositioning the side chains of Phe-206, Phe-297, and Glu-301, and leading to significant reshaping of the active site. Phe-206 and Phe-297 exchange positions, with Phe-206 becoming a ligand-contact residue, while Glu-301, rather than hydrogen bonding to the ligand, flips away from the active site and interacts with His-172. As a result the active site volume expands from 200 A3 in the 4-CPI complex to 280 A3 in the 1-CPI complex. Based on the two structures, it was predicted that a Phe-206-->Ala substitution would alter 1-CPI but not 4-CPI binding. Isothermal titration calorimetry experiments indicated that this substitution had no effect on the thermodynamic signature of 4-CPI binding to 2B4. In contrast, relative to wild-type 1-CPI binding to F206A showed significantly less favorable entropy but more favorable enthalpy. This result is consistent with loss of the aromatic side chain and possible ordering of water molecules, now able to interact with Glu-301 and exposed residues in the I-helix. Hence, thermodynamic measurements support the active site rearrangement observed in the crystal structure of the 1-CPI complex and illustrate the malleability of the active site with the fine-tuning of residue orientations and thermodynamic signatures.  相似文献   

10.
J Pagan  A E Senior 《FEBS letters》1990,273(1-2):147-149
It is shown that ATP dissociates very slowly (koff less than 6.4 x 10(5) s-1, t1/2 greater than 3 h) from the three noncatalytic sites of E. coli F1-ATPase and that ADP dissociates from these three sites in a homogeneous fashion with koff = 1.5 x 10(-4) s-1 (t1/2 = 1.35 h). Mutagenesis of alpha-subunit residues R171 and Q172 in the 'glycine-rich loop' (Homology A) consensus region of the noncatalytic sites was carried out to test the hypothesis that unusually bulky residues at these positions are responsible wholly or partly for the observed tight binding of adenine nucleotides. The mutations alpha Q172G or alpha R171S,Q172G had no effects on ATP or ADP binding to or rates of dissociation from F1 noncatalytic sites. KdATP and KdADP of isolated alpha-subunit were weakened by approximately 1 order of magnitude in both mutants. The results suggest that neither residue alpha R171 nor alpha Q172 interacts directly with bound nucleotide, and show that the presence of bulky residues per se in the glycine-rich loop region of F1-alpha-subunit is not responsible for tight binding in the noncatalytic sites.  相似文献   

11.
Elucidation of the 3D structure of histidine ammonia-lyase (HAL, EC 4.3.1.3) from Pseudomonas putida by X-ray crystallography revealed that the electrophilic prosthetic group at the active site is 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) [Schwede, T.F., Rétey, J., Schulz, G.E. (1999) Biochemistry, 38, 5355-5361]. To evaluate the importance of several amino-acid residues at the active site for substrate binding and catalysis, we mutated the following amino-acid codons in the HAL gene: R283, Y53, Y280, E414, Q277, F329, N195 and H83. Kinetic measurements with the overexpressed mutants showed that all mutations resulted in a decrease of catalytic activity. The mutants R283I, R283K and N195A were approximately 1640, 20 and 1000 times less active, respectively, compared to the single mutant C273A, into which all mutations were introduced. Mutants Y280F, F329A and Q277A exhibited approximately 55, 100 and 125 times lower activity, respectively. The greatest loss of activity shown was in the HAL mutants Y53F, E414Q, H83L and E414A, the last being more than 20 900-fold less active than the single mutant C273A, while H83L was 18 000-fold less active than mutant C273A. We propose that the carboxylate group of E414 plays an important role as a base in catalysis. To investigate a possible participation of active site amino acids in the formation of MIO, we used the chromophore formation upon treatment of HAL with l-cysteine and dioxygen at pH 10.5 as an indicator. All mutants, except F329A showed the formation of a 338-nm chromophore arising from a modified MIO group. The UV difference spectra of HAL mutant F329A with the MIO-free mutant S143A provide evidence for the presence of a MIO group in HAL mutant F329A also. For modelling of the substrate arrangement within the active site and protonation state of MIO, theoretical calculations were performed.  相似文献   

12.
Domanski TL  He YA  Khan KK  Roussel F  Wang Q  Halpert JR 《Biochemistry》2001,40(34):10150-10160
Phenylalanine and/or tryptophan scanning mutagenesis was performed at 15 sites within CYP3A4 proposed to be involved in substrate specificity or cooperativity. The sites were chosen on the basis of previous studies or from a comparison with the structure of P450(eryF) containing two molecules of androstenedione. The function of the 25 mutants was assessed in a reconstituted system using progesterone, testosterone, 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and alpha-naphthoflavone (ANF) as substrates. CYP3A4 wild type displayed sigmoidal kinetics of ANF 5,6-oxide formation and 7-BFC debenzylation. Analysis of 12 mutants with significant steroid hydroxylase activity showed a lack of positive correlation between ANF oxidation and stimulation of progesterone 6beta-hydroxylation by ANF, indicating that ANF binds at two sites within CYP3A4. 7-BFC debenzylation was stimulated by progesterone and ANF, and 7-BFC did not inhibit testosterone or progesterone 6beta-hydroxylation. Correlational analysis showed no relationship between 7-BFC debenzylation and either progesterone or testosterone 6beta-hydroxylation. These data are difficult to explain with a two-site model of CYP3A4 but suggest that three subpockets exist within the active site. Interestingly, classification of the mutants according to their ability to oxidize the four substrates utilized in this study suggested that substrates do bind at preferred locations in the CYP3A4 binding pocket.  相似文献   

13.
The fosfomycin resistance protein FosA is a member of a distinct superfamily of metalloenzymes containing glyoxalase I, extradiol dioxygenases, and methylmalonyl-CoA epimerase. The dimeric enzyme, with the aid of a single mononuclear Mn2+ site in each subunit, catalyzes the addition of glutathione (GSH) to the oxirane ring of the antibiotic, rendering it inactive. Sequence alignments suggest that the metal binding site of FosA is composed of three residues: H7, H67, and E113. The single mutants H7A, H67A, and E113A as well as the more conservative mutants H7Q, H67Q, and E113Q exhibit marked decreases in the ability to bind Mn2+ and, in most instances, decreases in catalytic efficiency and the ability to confer resistance to the antibiotic. The enzyme also requires the monovalent cation K+ for optimal activity. The K+ ion activates the enzyme 100-fold with an activation constant of 6 mM, well below the physiologic concentration of K+ in E. coli. K+ can be replaced by other monovalent cations of similar ionic radii. Several lines of evidence suggest that the K+ ion interacts directly with the active site. Interaction of the enzyme with K+ is found to be dependent on the presence of the substrate fosfomycin. Moreover, the E113Q mutant exhibits a kcat which is 40% that of wild-type in the absence of K+. This mutant is not activated by monovalent cations. The behavior of the E113Q mutant is consistent with the proposition that the K+ ion helps balance the charge at the metal center, further lowering the activation barrier for addition of the anionic nucleophile. The fully activated, native enzyme provides a rate acceleration of >10(15) with respect to the spontaneous addition of GSH to the oxirane.  相似文献   

14.
Vagin O  Denevich S  Munson K  Sachs G 《Biochemistry》2002,41(42):12755-12762
Inhibition of the gastric H,K-ATPase by the imidazo[1,2-alpha]pyridine, SCH28080, is strictly competitive with respect to K+ or its surrogate, NH4+. The inhibitory kinetics [V(max), K(m,app)(NH4+), K(i)(SCH28080), and competitive, mixed, or noncompetitive] of mutants can define the inhibitor binding domain and the route to the ion binding region within M4-6. While mutations Y799F, Y802F, I803L, S806N, V807I (M5), L811V (M5-6), Y928H (M8), and Q905N (M7-8) had no effect on inhibitor kinetics, mutations P798C, Y802L, P810A, P810G, C813A or -S, I814V or -F, F818C, T823V (M5, M5-6, and M6), E914Q, F917Y, G918E, T929L, and F932L (M7-8 and M8) reduced the affinity for SCH28080 up to 10-fold without affecting the nature of the kinetics. In contrast, the L809F substitution in the loop between M5 and M6 resulted in an approximately 100-fold decrease in inhibitor affinity, and substitutions L809V, I816L, Y925F, and M937V (M5-6, M6, and M8) reduced the inhibitor affinity by 10-fold, all resulting in noncompetitive kinetics. The mutants L811F, Y922I, and I940A also reduced the inhibitor affinity up to 10-fold but resulted in mixed inhibition. The mutations I819L, Q923V, and Y925A also gave mixed inhibition but without a change in inhibitor affinity. These data, and the 9-fold loss of SCH28080 affinity in the C813T mutant, suggest that the binding domain for SCH28080 contains the surface between L809 in the M5-6 loop and C813 at the luminal end of M6, approximately two helical turns down from the ion binding region, where it blocks the normal ion access pathway. On the basis of a model of the Ca-ATPase in the E2 conformation (PDB entry 1kju), the mutants that change the nature of the kinetics are arranged on one side of M8 and on the adjacent side of the M5-6 loop and M6 itself. This suggests that mutations in this region modify the enzyme structure so that K+ can access the ion binding domain even with SCH28080 bound.  相似文献   

15.
The H(+)(Na(+))-translocating NADH-quinone (Q) oxidoreductase (NDH-1) of Escherichia coli is composed of 13 different subunits (NuoA-N). Subunit NuoA (ND3, Nqo7) is one of the seven membrane domain subunits that are considered to be involved in H(+)(Na(+)) translocation. We demonstrated that in the Paracoccus denitrificans NDH-1 subunit, Nqo7 (ND3) directly interacts with peripheral subunits Nqo6 (PSST) and Nqo4 (49 kDa) by using cross-linkers (Di Bernardo, S., and Yagi, T. (2001) FEBS Lett. 508, 385-388 and Kao, M.-C., Matsuno-Yagi, A., and Yagi, T. (2004) Biochemistry 43, 3750-3755). To investigate the structural and functional roles of conserved charged amino acid residues, a nuoA knock-out mutant and site-specific mutants K46A, E51A, D79N, D79A, E81Q, E81A, and D79N/E81Q were constructed by utilizing chromosomal DNA manipulation. In terms of immunochemical and NADH dehydrogenase activity-staining analyses, all site-specific mutants are similar to the wild type, suggesting that those NuoA site-specific mutations do not significantly affect the assembly of peripheral subunits in situ. In addition, site-specific mutants showed similar deamino-NADH-K(3)Fe(CN)(6) reductase activity to the wild type. The K46A mutation scarcely inhibited deamino-NADH-Q reductase activity. In contrast, E51A, D79A, D79N, E81A, and E81Q mutation partially suppressed deamino-NADH-Q reductase activity to 30, 90, 40, 40, and 50%, respectively. The double mutant D79N/E81Q almost completely lost the energy-transducing NDH-1 activities but did not display any loss of deamino-NADH-K(3)Fe(CN)(6) reductase activity. The possible functional roles of residues Asp-79 and Glu-81 were discussed.  相似文献   

16.
Several amino acids in the active center of the 6-phospho-beta-galactosidase from Lactococcus lactis were replaced by the corresponding residues in homologous enzymes of glycosidase family 1 with different specificities. Three mutants, W429A, K435V/Y437F and S428D/ K435V/Y437F, were constructed. W429A was found to have an improved specificity for glucosides compared with the wild-type, consistent with the theory that the amino acid at this position is relevant for the distinction between galactosides and glucosides. The k(cat)/K(m) for o-nitrophenyl-beta-D-glucose-6-phosphate is 8-fold higher than for o-nitrophenyl-beta-D-galactose-6-phosphate which is the preferred substrate of the wild-type enzyme. This suggests that new hydrogen bonds are formed in the mutant between the active site residues, presumably Gln19 or Trp421 and the C-4 hydroxyl group. The two other mutants with the exchanges in the phosphate-binding loop were tested for their ability to bind phosphorylated substrates. The triple mutant is inactive. The double mutant has a dramatically decreased ability to bind o-nitrophenyl-beta-D-galactose-6-phosphate whereas the interaction with o-nitrophenyl-beta-D-galactose is barely altered. This result shows that the 6-phospho-beta-galactosidase and the related cyanogenic beta-glucosidase from Trifolium repens have different recognition mechanisms for substrates although the structures of the active sites are highly conserved.  相似文献   

17.
Six double mutants of Glu(795) and Glu(820) present in transmembrane domains 5 and 6 of the alpha-subunit of rat gastric H(+),K(+)-ATPase were generated and expressed with the baculovirus expression system. Five of the six mutants exhibited an SCH 28080-sensitive ATPase activity in the absence of K(+). The activity levels decreased in the following order: E795Q/E820A > E795Q/E820Q > E795Q/E820D congruent with E795A/E820A > E795L/E820Q. The E795L/E820D mutant possessed no constitutive activity. The relative low ATPase activity of the E795L/E820Q mutant is due to its low phosphorylation rate so that the dephosphorylation step was no longer rate-limiting. The constitutively active mutants showed a much lower vanadate sensitivity than the wild-type enzyme and K(+)-sensitive mutants, indicating that these mutants have a preference for the E(1) conformation. In contrast to the constitutively active single mutants generated previously, the double mutants exhibited a high spontaneous dephosphorylation rate at 0 degrees C compared to that of the wild-type enzyme. In addition, the H(+),K(+)-ATPase inhibitor SCH 28080 increased the steady-state phosphorylation level of the constitutively active mutants, due to the formation of a stable complex with the E(2)-P form. These studies further substantiate the idea that the empty ion binding pockets of some mutants apparently mimic the K(+)-filled binding pocket of the native enzyme.  相似文献   

18.
In all organisms studied to date, 8-oxoguanine (GO), an important oxidation product of guanine, is removed by highly conserved GO DNA glycosylases. The hyperthermophilic crenarchaeon Pyrobaculum aerophilum encodes a GO DNA glycosylase, Pa-AGOG (Archaeal GO DNA glycosylase) which has become the founding member of a new family within the HhH-GPD superfamily of DNA glycosylases based on unique structural and functional characteristics. In this study, we made quantitative measurements of the DNA glycosylase activity of Pa-AGOG wild type and some engineered variants under single turnover conditions. The mutagenesis study includes residues Trp222 (W222A and W222F), Trp69 (W69F), Gln31 (Q31S) and Lys147 (K147Q) all of which are involved in GO recognition and Asp172 (D172N and D172Q) and Lys140 (K140Q) that are involved in catalysis. Pa-AGOG prefers GO/G mispairs for both base excision and base excision/β-lyase activities. The mutagenesis studies show that base-stacking between GO and Trp222 is very important for recognition. The contact between Trp69 and the 8-oxo group was found to be dispensable, while that to N7 by Gln31 is indispensable for GO recognition. In contrast to human OGG1 the catalytic mutant, D172Q did not show detectable glycosylase activity. Pa-AGOG mutants K140Q, D172N and D172Q did bind GO containing single-stranded DNA more tightly than double-stranded DNA containing a GO/C base pair. Our studies confirm and extend the unique characteristics of Pa-AGOG, which distinguish it from other mesophilic and thermostable GO DNA glycosylases.  相似文献   

19.
Sellers VM  Wu CK  Dailey TA  Dailey HA 《Biochemistry》2001,40(33):9821-9827
The terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to form protoheme, is catalyzed by the enzyme ferrochelatase (EC 4.99.1.1). A number of highly conserved residues identified from the crystal structure of human ferrochelatase as being in the active site were examined by site-directed mutagenesis. The mutants Y123F, Y165F, Y191H, and R164L each had an increased K(m) for iron without an altered K(m) for porphyrin. The double mutant R164L/Y165F had a 6-fold increased K(m) for iron and a 10-fold decreased V(max). The double mutant Y123F/Y191F had low activity with an elevated K(m) for iron, and Y123F/Y165F had no measurable activity. The mutants H263A/C/N, D340N, E343Q, E343H, and E343K had no measurable enzyme activity, while E343D, E347Q, and H341C had decreased V(max)s without significant alteration of the K(m)s for either substrate. D340E had near-normal kinetic parameters, while D383A and H231A had increased K(m)s for iron. On the basis of these data and the crystal structure of human ferrochelatase, it is proposed that residues E343, H341, and D340 form a conduit from H263 in the active site to the protein exterior and function in proton extraction from the porphyrin macrocycle. The role of H263 as the porphyrin proton-accepting residue is central to catalysis since metalation only occurs in conjunction with proton abstraction. It is suggested that iron is transported from the exterior of the enzyme at D383/H231 via residues W227 and Y191 to the site of metalation at residues R164 and Y165 which are on the opposite side of the active site pocket from H263. This model should be general for mitochondrial membrane-associated eucaryotic ferrochelatases but may differ for bacterial ferrochelatases since the spatial orientation of the enzyme within prokaryotic cells may differ.  相似文献   

20.
The stability properties of oxidized wild-type (wt) and site-directed mutants in surface residues of vegetative (Vfd) and heterocyst (Hfd) ferredoxins from Anabaena 7120 have been characterized by guanidine hydrochloride (Gdn-HCl) denaturation. For Vfd it was found that mutants E95K, E94Q, F65Y, F65W, and T48A are quite similar to wt in stability. E94K is somewhat less stable, whereas E94D, F65A, F65I, R42A, and R42H are substantially less stable than wt. R42H is a substitution found in all Hfds, and NMR comparison of the Anabaena 7120 Vfd and Hfd showed the latter to be much less stable on the basis of hydrogen exchange rates (Chae YK, Abildgaard F, Mooberry ES, Markley JL, 1994, Biochemistry 33:3287-3295); we also find this to be true with respect to Gdn-HCl denaturation. Strikingly, the Hfd mutant H42R is more stable than the wt Hfd by precisely the amount of stability lost in Vfd upon mutating R42 to H (2.0 kcal/mol). On the basis of comparison of the X-ray crystal structures of wt Anabaena Vfd and Hfd, the decreased stabilities of F65A and F65I can be ascribed to increased solvent exposure of interior hydrophobic groups. In the case of Vfd mutants E94K and E94D, the decreased stabilities may result from disruption of a hydrogen bond between the E94 and S47 side chains. The instability of the R42 mutants is also most probably due to decreased hydrogen bonding capabilities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号