首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Movin' on up: the role of PtdIns(4,5)P(2) in cell migration   总被引:7,自引:0,他引:7  
Cell migration requires the coordination of many biochemical events, including cell-matrix contact turnover and cytoskeletal restructuring. Recent advances further implicate phosphatidylinositol(4,5)-bisphosphate [PtdIns(4,5)P(2)] in the control of these events. Many proteins that are crucial to the assembly of the migration machinery are regulated by PtdIns(4,5)P(2). Coordinated synthesis of PtdIns(4,5)P(2) at these sites is dependent on the precise targeting of the type I phosphatidylinositol phosphate kinases (PIPKs). Two PIPKI isoforms target to, and generate, PtdIns(4,5)P(2) at membrane ruffles and focal adhesions during cell migration. Here, we discuss our current understanding of PtdIns(4,5)P(2) in the regulation of cell responses to migratory stimuli and how the migrating cell controls PtdIns(4,5)P(2) availability.  相似文献   

2.
Phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) modulates a plethora of cytoskeletal interactions that control the dynamics of actin assembly and, ultimately, cell migration. We show that the type Igamma phosphatidylinositol phosphate kinase 661 (PIPKIgamma661), an enzyme that generates PI4,5P(2), is required for growth factor but not G protein-coupled receptor-stimulated directional migration. By generating PI4,5P(2) and regulating talin assembly, PIPKIgamma661 modulates nascent adhesion formation at the leading edge to facilitate cell migration. The epidermal growth factor (EGF) receptor directly phosphorylates PIPKIgamma661 at tyrosine 634, and this event is required for EGF-induced migration. This phosphorylation regulates the interaction between PIPKIgamma661 and phospholipase Cgamma1 (PLCgamma1, an enzyme previously shown to be involved in the regulation of EGF-stimulated migration). Our results suggest that phosphorylation events regulating specific PIPKIgamma661 interactions are required for growth factor-induced migration. These interactions in turn define the spatial and temporal generation of PI4,5P(2) and derived messengers required for directional migration.  相似文献   

3.
Phosphatidylinositol 4-phosphate 5-kinase (PIPK) catalyzes a final step in the synthesis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), a lipid signaling molecule. Strict regulation of PIPK activity is thought to be essential in intact cells. Here we show that type I enzymes of PIPK (PIPKI) are phosphorylated by cyclic AMP-dependent protein kinase (PKA), and phosphorylation of PIPKI suppresses its activity. Serine 214 was found to be a major phosphorylation site of PIPK type Ialpha (PIPKIalpha) that is catalyzed by PKA. In contrast, lysophosphatidic acid-induced protein kinase C activation increased PIPKIalpha activity. Activation of PIPKIalpha was induced by dephosphorylation, which was catalyzed by an okadaic acid-sensitive phosphatase, protein phosphatase 1 (PP1). In vitro dephosphorylation of PIPKIalpha with PP1 increased PIPK activity, indicating that PP1 plays a role in lysophosphatidic acid-induced dephosphorylation of PIPKIalpha. These results strongly suggest that activity of PIPKIalpha in NIH 3T3 cells is regulated by the reversible balance between PKA-dependent phosphorylation and PP1-dependent dephosphorylation.  相似文献   

4.
Caroni P 《The EMBO journal》2001,20(16):4332-4336
The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.  相似文献   

5.
Cofilin is a key player in actin dynamics during cell migration. Its activity is regulated by (de)phosphorylation, pH, and binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Here, we here use a human cofilin-1 (D122K) mutant with increased binding affinity for PI(4,5)P2 and slower release from the plasma membrane to study the role of the PI(4,5)P2–cofilin interaction in migrating cells. In fibroblasts in a background of endogenous cofilin, D122K cofilin expression negatively affects cell turning frequency. In carcinoma cells with down-regulated endogenous cofilin, D122K cofilin neither rescues the drastic morphological defects nor restores the effects in cell turning capacity, unlike what has been reported for wild-type cofilin. In cofilin knockdown cells, D122K cofilin expression promotes outgrowth of an existing lamellipod in response to epidermal growth factor (EGF) but does not result in initiation of new lamellipodia. This indicates that, next to phospho- and pH regulation, the normal release kinetics of cofilin from PI(4,5)P2 is crucial as a local activation switch for lamellipodia initiation and as a signal for migrating cells to change direction in response to external stimuli. Our results demonstrate that the PI(4,5)P2 regulatory mechanism, that is governed by EGF-dependent phospholipase C activation, is a determinant for the spatial and temporal control of cofilin activation required for lamellipodia initiation.  相似文献   

6.
We have recently identified Star-PAP, a nuclear poly(A) polymerase that associates with phosphatidylinositol-4-phosphate 5-kinase Ialpha (PIPKIalpha) and is required for the expression of a specific subset of mRNAs. Star-PAP activity is directly modulated by the PIPKIalpha product phosphatidylinositol 4,5-bisphosphate (PI-4,5-P(2)), linking nuclear phosphoinositide signaling to gene expression. Here, we show that PI-4,5-P(2)-dependent protein kinase activity is also a part of the Star-PAP protein complex. We identify the PI-4,5-P(2)-sensitive casein kinase Ialpha (CKIalpha) as a protein kinase responsible for this activity and further show that CKIalpha is capable of directly phosphorylating Star-PAP. Both CKIalpha and PIPKIalpha are required for the synthesis of some but not all Star-PAP target mRNA, and like Star-PAP, CKIalpha is associated with these messages in vivo. Taken together, these data indicate that CKIalpha, PIPKIalpha, and Star-PAP function together to modulate the production of specific Star-PAP messages. The Star-PAP complex therefore represents a location where multiple signaling pathways converge to regulate the expression of specific mRNAs.  相似文献   

7.
The Zyxin/Ajuba family of cytosolic LIM domain-containing proteins has the potential to shuttle from sites of cell adhesion into the nucleus and thus can be candidate transducers of environmental signals. To understand Ajuba's role in signal transduction pathways, we performed a yeast two-hybrid screen with the LIM domain region of Ajuba. We identified the atypical protein kinase C (aPKC) scaffold protein p62 as an Ajuba binding partner. A prominent function of p62 is the regulation of NF-kappaB activation in response to interleukin-1 (IL-1) and tumor necrosis factor signaling through the formation of an aPKC/p62/TRAF6 multiprotein signaling complex. In addition to p62, we found that Ajuba also interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and PKCzeta. Ajuba recruits TRAF6 to p62 and in vitro activates PKCzeta activity and is a substrate of PKCzeta. Ajuba null mouse embryonic fibroblasts (MEFs) and lungs were defective in NF-kappaB activation following IL-1 stimulation, and in lung IKK activity was inhibited. Overexpression of Ajuba in primary MEFs enhances NF-kappaB activity following IL-1 stimulation. We propose that Ajuba is a new cytosolic component of the IL-1 signaling pathway modulating IL-1-induced NF-kappaB activation by influencing the assembly and activity of the aPKC/p62/TRAF6 multiprotein signaling complex.  相似文献   

8.
We examined the possible occurrence and function of neuronal Ca(2+) sensor 1 (NCS-1/frequenin) in the mast cell line rat basophilic leukemia, RBL-2H3. This protein has been implicated in the control of neurosecretion from dense core granules in neuronal cells as well as in the control of constitutive secretory pathways in both yeast and mammalian cells. We show that RBL-2H3 cells, secretory cells of the immune system, endogenously express the 22-kDa NCS-1 protein as well as an immune-related 50-kDa protein. Both proteins associate in vivo with phosphatidylinositol 4-kinase beta (PI4Kbeta) and colocalize with the enzyme in the Golgi region. We show further that overexpression of NCS-1 in RBL-2H3 cells stimulates the catalytic activity of PI4Kbeta, increases IgE receptor (FcepsilonRI)-triggered hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), and stimulates FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Conversely, expression of a kinase-dead mutant of PI4Kbeta reduces PI4Kbeta activity, decreases FcepsilonRI-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis, and blocks FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Our results indicate that PI(4)P, produced by the Golgi-localized PI4Kbeta, is the rate-limiting factor in the synthesis of the pool of PI(4,5)P(2) that serves as substrate for the generation of lipid-derived second messengers in FcepsilonRI-triggered cells. We conclude that NCS-1 is involved in the control of regulated exocytosis in nonneural cells, where it contributes to stimulus-secretion coupling by interacting with PI4Kbeta and positive regulation of its activity.  相似文献   

9.
Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase   总被引:14,自引:0,他引:14  
The serine/threonine kinase Rho-kinase was recently identified as a downstream effector of the small GTPase Rho, mediating effects of Rho on the actin cytoskeleton. Also phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) has been implicated in the regulation of actin polymerization. As the synthesis of PI(4,5)P(2) has been suggested to be affected by Rho proteins, we investigated whether Rho-kinase is involved in the control of PI(4,5)P(2) levels. Overexpression of RhoA in HEK-293 cells increased phosphatidylinositol 4-phosphate (PI4P) 5-kinase activity and concomitantly enhanced cellular PI(4,5)P(2) levels, whereas overexpression of the Rho-inactivating C3 transferase decreased both PI4P 5-kinase activity and PI(4,5)P(2) levels. These effects of RhoA could be mimicked by overexpression of wild-type Rho-kinase and of the constitutively active catalytic domain of Rho-kinase, Rho-kinase-CAT. In contrast, a kinase-deficient mutant of Rho-kinase had no effect on PI4P 5-kinase activity. Importantly, the increase in PI4P 5-kinase activity and PI(4,5)P(2) levels by wild-type Rho-kinase, but not by Rho-kinase-CAT, was completely prevented by coexpression of C3 transferase, indicating that the effect of Rho-kinase was under the control of endogenous Rho. In cell lysates, addition of recombinant RhoA and Rho-kinase-CAT stimulated PI4P 5-kinase activity. Finally, the increase in PI(4,5)P(2) levels induced by both Rho-kinase-CAT and RhoA was reversed by the Rho-kinase inhibitor HA-1077. Our data suggest that Rho-kinase is involved in the Rho-controlled synthesis of PI(4,5)P(2) by PI4P 5-kinase.  相似文献   

10.
The lipid second messenger PI(4,5)P(2) modulates actin dynamics, and its local accumulation at plasmalemmal microdomains (rafts) might mediate regulation of protrusive motility. However, how PI(4,5)P(2)-rich rafts regulate surface motility is not well understood. Here, we show that upon signals promoting cell surface motility, PI(4,5)P(2) directs the assembly of dynamic raft-rich plasmalemmal patches, which promote and sustain protrusive motility. The accumulation of PI(4,5)P(2) at rafts, together with Cdc42, promotes patch assembly through N-WASP. The patches exhibit locally regulated PI(4,5)P(2) turnover and reduced diffusion-mediated exchange with their environment. Patches capture microtubules (MTs) through patch IQGAP1, to stabilize MTs at the leading edge. Captured MTs in turn deliver PKA to patches to promote patch clustering through further PI(4,5)P(2) accumulation in response to cAMP. Patch clustering restricts, spatially confines, and polarizes protrusive motility. Thus, PI(4,5)P(2)-dependent raft-rich patches enhance local signaling for motility, and their assembly into clusters is regulated through captured MTs and PKA, coupling local regulation of motility to cell polarity, and organization.  相似文献   

11.
A genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIalpha in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed that the rate of 32Pi incorporation into whole-cell PtdIns(4,5)P2 increased >12-fold, and the ratio of [3H]PtdInsP2 to [3H]PtdInsP increased 6-fold, but PtdInsP levels did not decrease, indicating that PtdInsP biosynthesis was not limiting. Both [3H]inositol trisphosphate and [3H]inositol hexakisphosphate increased 3-and 1.5-fold, respectively, in the transgenic lines after 18 h of labeling. The inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] binding assay showed that total cellular Ins(1,4,5)P3/g fresh weight was >40-fold higher in transgenic tobacco lines; however, even with this high steady state level of Ins(1,4,5)P3, the pathway was not saturated. Stimulating transgenic cells with hyperosmotic stress led to another 2-fold increase, suggesting that the transgenic cells were in a constant state of PI stimulation. Furthermore, expressing Hs PIPKIalpha increased sugar use and oxygen uptake. Our results demonstrate that PIPK is flux limiting and that this high rate of PI metabolism increased the energy demands in these cells.  相似文献   

12.
Cell migration requires extension of lamellipodia that are stabilized by formation of adhesive complexes at the leading edge. Both processes are regulated by signaling proteins recruited to nascent adhesive sites that lead to activation of Rho GTPases. The Ajuba/Zyxin family of LIM proteins are components of cellular adhesive complexes. We show that cells from Ajuba null mice are inhibited in their migration, without associated abnormality in adhesion to extracellular matrix proteins, cell spreading, or integrin activation. Lamellipodia production, or function, is defective and there is a selective reduction in the level and tyrosine phosphorylation of FAK, p130Cas, Crk, and Dock180 at nascent focal complexes. In response to migratory cues Rac activation is blunted in Ajuba null cells, as detected biochemically and by FRET analysis. Ajuba associates with the focal adhesion-targeting domain of p130Cas, and rescue experiments suggest that Ajuba acts upstream of p130Cas to localize p130Cas to nascent adhesive sites in migrating cells thereby leading to the activation of Rac.  相似文献   

13.
We have compared Ca-dependent exocytosis in excised giant membrane patches and in whole-cell patch clamp with emphasis on the rat secretory cell line, RBL. Stable patches of 2-4 pF are easily excised from RBL cells after partially disrupting actin cytoskeleton with latrunculin A. Membrane fusion is triggered by switching the patch to a cytoplasmic solution containing 100-200 microM free Ca. Capacitance and amperometric recording show that large secretory granules (SGs) containing serotonin are mostly lost from patches. Small vesicles that are retained (non-SGs) do not release serotonin or other substances detected by amperometry, although their fusion is reduced by tetanus toxin light chain. Non-SG fusion is unaffected by N-ethylmaleimide, phosphatidylinositol-4,5-bis-phosphate (PI(4,5)P(2)) ligands, such as neomycin, a PI-transfer protein that can remove PI from membranes, the PI(3)-kinase inhibitor LY294002 and PI(4,5)P(2), PI(3)P, and PI(4)P antibodies. In patch recordings, but not whole-cell recordings, fusion can be strongly reduced by ATP removal and by the nonspecific PI-kinase inhibitors wortmannin and adenosine. In whole-cell recording, non-SG fusion is strongly reduced by osmotically induced cell swelling, and subsequent recovery after shrinkage is then inhibited by wortmannin. Thus, membrane stretch that occurs during patch formation may be a major cause of differences between excised patch and whole-cell fusion responses. Regarding Ca sensors for non-SG fusion, fusion remains robust in synaptotagmin (Syt) VII-/- mouse embryonic fibroblasts (MEFs), as well as in PLCdelta1, PLC delta1/delta4, and PLCgamma1-/- MEFs. Thus, Syt VII and several PLCs are not required. Furthermore, the Ca dependence of non-SG fusion reflects a lower Ca affinity (K(D) approximately 71 microM) than expected for these C2 domain-containing proteins. In summary, we find that non-SG membrane fusion behaves and is regulated substantially differently from SG fusion, and we have identified an ATP-dependent process that restores non-SG fusion capability after it is perturbed by membrane stretch or cell dilation.  相似文献   

14.
Background:Focal adhesions (FAs) are highly dynamic complex structures that assembled and disassembled on an ongoing basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion to cell migration. Assembly and disassembly processes of FAs are regulated by a variety of cellular signaling proteins and adaptors. We previously demonstrated that local levels of Phosphatidylinositol 4,5‐bisphosphate (PtdIns(4,5)P2) in MDA-MB-231 cells increases during FA assembly and declines during disassembly. In this study we aimed to investigate whether PtdIns(4,5)P2 regulates FA turnover.Methods:MDA-MB-231 cells were co-transfected with a labeling vinculin (or zyxin) and the PLC𝛅1-PH biosensor to visualize FA localization and PtdIns(4,5)P2 in the cell membrane. We also used pharmacological inhibitors to determine the mechanism underlying the changes of PtdIns(4,5)P2 level during FA turnover and cell migration. Immunostaining, immunoprecipitation, and Western blotting were used to examine the localization and interaction between phospholipase C (PLC)/phosphatidylinositol 3-kinase (PI3K) FA proteins.Results:We showed that inhibition of PLC, PI3K significantly reduced the decline of PtdIns(4,5)P2 levels within FA disassembly and the slowdown rate of FA turnover and cell migration. We also showed that the inhibition of enzymes implicated in the downstream pathway of PtdIns(4,5)P2, such as diacylglycerol kinase (DAGK) and protein kinase C (PKC) significantly reduced FA turnover time and the speed of cell migration. Additionally, we demonstrated that PLC but not PI3K interact with FAs. In conclusion,DiscussionThis study suggests that dynamical changes of PtdIns(4,5)P2 might regulate FA turnover and facilitate cell migration.Key Words: Cell Migration, Focal adhesion turnover, MDA-MB-231 Breast Cancer Cell Line, Ptdins(4,5)P2, PLC, PI3K  相似文献   

15.
In chemotaxing cells, localization of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) to the leading edge of the cell sets the direction and regulates the formation of pseudopods at the anterior. We show that the lipid phosphatase activity of PTEN mediates chemotaxis and that the sharp localization of PI(3,4,5)P3 requires localization of PTEN to the rear of the cell. Our data suggest that a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding motif at the N terminus of PTEN serves the dual role of localizing the enzyme to the membrane and regulating its activity. Mutations in this motif enhance catalytic activity but render the enzyme inactive in vivo by preventing membrane association. The key role of this motif may explain the heretofore puzzling tumor-suppressing mutations occurring within the PI(4,5)P2 binding motif. On the other hand, the localization of PTEN does not depend on its phosphatase activity, the actin cytoskeleton, or the intracellular level of PI(3,4,5)P3, suggesting that events controlling localization are upstream of phosphoinositide signaling.  相似文献   

16.
TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controlling TRPV3 channel activity in keratinocytes remain elusive. We show here that receptor-mediated breakdown of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PI(4,5)P(2)) regulates the activity of both native TRPV3 channels in primary human skin keratinocytes and expressed TRPV3 in a HEK-293-derived cell line stably expressing muscarinic M(1)-type acetylcholine receptors. Stimulation of PI(4,5)P(2) hydrolysis or pharmacological inhibition of PI 4 kinase to block PI(4,5)P(2) synthesis potentiates TRPV3 currents by causing a negative shift in the voltage dependence of channel opening, increasing the proportion of voltage-independent current and causing thermal activation to occur at cooler temperatures. The activity of single TRPV3 channels in excised patches is potentiated by PI(4,5)P(2) depletion and selectively decreased by PI(4,5)P(2) compared with related phosphatidylinositol phosphates. Neutralizing mutations of basic residues in the TRP domain abrogate the effect of PI(4,5)P(2) on channel function, suggesting that PI(4,5)P(2) directly interacts with a specific protein motif to reduce TRPV3 channel open probability. PI(4,5)P(2)-dependent modulation of TRPV3 activity represents an attractive mechanism for acute regulation of keratinocyte signaling cascades that control cell proliferation and the release of autocrine and paracrine factors.  相似文献   

17.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is required both as a substrate for the generation of lipid-derived second messengers as well as an intact lipid for many aspects of cell signaling, endo- and exocytosis, and reorganization of the cytoskeleton. ADP ribosylation factor (ARF) proteins regulate PI(4,5)P(2) synthesis, and here we have examined whether this is due to direct activation of Type I phosphatidylinositol 4-phosphate (PIP) 5-kinase or indirectly by phosphatidate (PA) derived from phospholipase D (PLD) in HL60 cells. ARF1 and ARF6 are both expressed in HL60 cells and can be depleted from the cells by permeabilization. Both ARFs increased the levels of PIP(2) (PI(4,5)P(2), PI(3,5)P(2), or PI(3,4)P(2) isomers) at the expense of PIP when added back to permeabilized cells. The PIP(2) could be hydrolyzed by phospholipase C, identifying it as PI(4,5)P(2). However, the ARF1-stimulated pool of PI(4,5)P(2) was accessible to the phospholipase C more efficiently in the presence of phosphatidylinositol transfer protein-alpha. To examine the role of PLD in the regulation of PI(4,5)P(2) synthesis, we used butanol to diminish the PLD-derived PA. PI(4,5)P(2) synthesis stimulated by ARF1 was not blocked by 0.5% butanol but could be blocked by 1.5% butanol. Although 0.5% butanol was optimal for maximal transphosphatidylation, PA production was still detectable. In contrast, 1.5% butanol was found to inhibit the activation of PLD by ARF1 and also decrease PIP levels by 50%. Thus the toxicity of 1.5% butanol prevented us from concluding whether PA was an important factor in raising PI(4,5)P(2) levels. To circumvent the use of alcohols, an ARF1 point mutant was identified (N52R-ARF1) that could selectively activate PIP 5-kinase alpha activity but not PLD activity. N52R-ARF1 was still able to increase PI(4,5)P(2) levels but at reduced efficiency. We therefore conclude that both PA derived from the PLD pathway and ARF proteins, by directly activating PIP 5-kinase, contribute to the regulation of PI(4,5)P(2) synthesis at the plasma membrane in HL60 cells.  相似文献   

18.
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.  相似文献   

19.
Phosphoinositide 3-kinase (PI3K) regulates cell polarity and migration by generating phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) at the leading edge of migrating cells. The serine-threonine protein kinase Akt binds to PI(3,4,5)P(3), resulting in its activation. Active Akt promotes spatially regulated actin cytoskeletal remodeling and thereby directed cell migration. The inositol polyphosphate 5-phosphatases (5-ptases) degrade PI(3,4,5)P(3) to form PI(3,4)P(2), which leads to diminished Akt activation. Several 5-ptases, including SKIP and SHIP2, inhibit actin cytoskeletal reorganization by opposing PI3K/Akt signaling. In this current study, we identify a molecular co-chaperone termed silencer of death domains (SODD/BAG4) that forms a complex with several 5-ptase family members, including SKIP, SHIP1, and SHIP2. The interaction between SODD and SKIP exerts an inhibitory effect on SKIP PI(3,4,5)P(3) 5-ptase catalytic activity and consequently enhances the recruitment of PI(3,4,5)P(3)-effectors to the plasma membrane. In contrast, SODD(-/-) mouse embryonic fibroblasts exhibit reduced Akt-Ser(473) and -Thr(308) phosphorylation following EGF stimulation, associated with increased SKIP PI(3,4,5)P(3)-5-ptase activity. SODD(-/-) mouse embryonic fibroblasts exhibit decreased EGF-stimulated F-actin stress fibers, lamellipodia, and focal adhesion complexity, a phenotype that is rescued by the expression of constitutively active Akt1. Furthermore, reduced cell migration was observed in SODD(-/-) macrophages, which express the three 5-ptases shown to interact with SODD (SKIP, SHIP1, and SHIP2). Therefore, this study identifies SODD as a novel regulator of PI3K/Akt signaling to the actin cytoskeleton.  相似文献   

20.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号