首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past several decades biologists' fascination with plant-herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.  相似文献   

2.
Facultative symbiont infections affect aphid reproduction   总被引:1,自引:0,他引:1  
Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.  相似文献   

3.
The pervasive influence of resident microorganisms on the phenotype of their hosts is exemplified by the intracellular bacterium Buchnera aphidicola, which provides its aphid partner with essential amino acids (EAAs). We investigated variation in the dietary requirement for EAAs among four pea aphid (Acyrthosiphon pisum) clones. Buchnera-derived nitrogen contributed to the synthesis of all EAAs for which aphid clones required a dietary supply, and to none of the EAAs for which all four clones had no dietary requirement, suggesting that low total dietary nitrogen may select for reduced synthesis of certain EAAs in some aphid clones. The sequenced Buchnera genomes showed that the EAA nutritional phenotype (i.e. the profile of dietary EAAs required by the aphid) cannot be attributed to sequence variation of Buchnera genes coding EAA biosynthetic enzymes. Metabolic modelling by flux balance analysis demonstrated that EAA output from Buchnera can be determined precisely by the flux of host metabolic precursors to Buchnera. Specifically, the four EAA nutritional phenotypes could be reproduced by metabolic models with unique profiles of host inputs, dominated by variation in supply of aspartate, homocysteine and glutamate. This suggests that the nutritional phenotype of the symbiosis is determined principally by host metabolism and transporter genes that regulate nutrient supply to Buchnera. Intraspecific variation in the nutritional phenotype of symbioses is expected to mediate partitioning of plant resources among aphid genotypes, potentially promoting the genetic subdivision of aphid populations. In this way, microbial symbioses may play an important role in the evolutionary diversification of phytophagous insects.  相似文献   

4.
Molecular systematics of aphids and their primary endosymbionts   总被引:3,自引:0,他引:3  
Aphids constitute a monophyletic group within the order Homoptera (i.e., superfamily Aphidoidea). The Aphidoidea originated in the Jurassic about 150 my ago from some aphidiform ancestor whose origin can be traced back to about 250 my ago. They exhibit a mutualistic association with intracellular bacteria (Buchnera sp.) related to Escherichia coli. Buchnera is usually considered the aphids' primary endosymbiont. The association is obligate for both partners. The 16S rDNA-based phylogeny of Buchnera from four aphid families showed complete concordance with the morphology-based phylogeny of their aphid hosts, which pointed to a single original infection in a common ancestor of aphids some 100-250 my ago followed by cospeciation of aphids and Buchnera. This study concentrated on the molecular phylogeny of both the aphids and their primary endosymbionts of five aphid families including for the first time representatives of the family Lachnidae. We discuss results based on two Buchnera genes (16S rDNA and the beta subunit of the F-ATPase complex) and on one host mitochondrial gene (the subunit 6 of the F-ATPase complex). Although our data do not allow definitive evolutionary relationships to be established among the different aphid families, some traditionally accepted groupings are put into question from both bacterial and insect data. In particular, the Lachnidae and the Aphididae, which from morphological data are considered recently evolved sister groups, do not seem to be as closely related as is usually accepted. Finally, we discuss our results in the light of the proposed parallel evolution of aphids and their endosymbionts.  相似文献   

5.
Abbot P  Moran NA 《Molecular ecology》2002,11(12):2649-2660
Molecular evolutionary studies have suggested that vertically transmitted endosymbionts are subject to accumulation of deleterious mutations through genetic drift. Predictions of this hypothesis for patterns of intraspecific polymorphism were borne out in the single relevant study available, on the symbiont Buchnera aphidicola of Uroleucon ambrosiae. In order to examine the generality of this result, we surveyed DNA sequence variation in Buchnera of the distantly related aphid, Pemphigus obesinymphae. In contrast to Uroleucon species, Pemphigus species have complex life cycles with few dispersal stages. Despite these differences, P. obesinymphae showed patterns of variation at two Buchnera loci and one mitochondrial locus that were remarkably similar to those reported previously for Buchnera of U. ambrosiae. In the western US, Buchnera was nearly monomorphic, and in the eastern US, synonymous divergence ranged from 0.08 to 0.16%. Most polymorphisms involved rare alleles, consistent with a recent range of ancestral polymorphism, probably due to demographic fluctuations in aphid populations. These results support the generality of small effective population size in Buchnera and their aphid hosts.  相似文献   

6.
7.
Plague GR  Dale C  Moran NA 《Molecular ecology》2003,12(4):1095-1100
The bacterial endosymbiont of aphids, Buchnera aphidicola, often provides amino acids to its hosts. Plasmid amplification of leucine (leuABCD) and tryptophan (trpEG) biosynthesis genes may be a mechanism by which some Buchnera over-produce these nutrients. We used quantitative polymerase chain reaction to assess the leuABCD/trpEG copy variability within Uroleucon ambrosiae, an aphid with a wide diet breadth and range. Both leuABCD and trpEG abundances are: (i) similar for aphids across 15 populations, and (ii) low compared to Buchnera from other aphid species (particularly trpEG). Consequently, the plasmid location of trpEG combined with Buchnera's chromosomal polyploidy may functionally limit, rather than increase, tryptophan production within Uroleucon ambrosiae.  相似文献   

8.
9.
Almost all aphids harbour an endosymbiotic bacterium, Buchnera aphidicola, in bacteriocytes. Buchnera synthesizes essential nutrients and supports growth and reproduction of the host. Over the long history of endosymbiosis, many essential genes have been lost from the Buchnera genome, resulting in drastic genome reduction and the inability to live outside the host cells. In turn, when deprived of Buchnera, the host aphid suffers retarded growth and sterility. Buchnera and the host aphid are often referred to as highly integrated almost inseparable mutualistic partners. However, we discovered that, even after complete elimination of Buchnera, infection with a facultative endosymbiotic gamma-proteobacterium called pea aphid secondary symbiont (PASS) enabled survival and reproduction of the pea aphid. In the Buchnera-free aphid, PASS infected the cytoplasms of bacteriocytes that normally harbour Buchnera, establishing a novel endosymbiotic system. These results indicate that PASS can compensate for the essential role of Buchnera by physiologically and cytologically taking over the symbiotic niche. By contrast, PASS negatively affected the growth and reproduction of normal host aphids by suppressing the essential symbiont Buchnera. These findings illuminate complex symbiont-symbiont and host-symbiont interactions in an endosymbiotic system, and suggest a possible evolutionary route to novel obligate endosymbiosis by way of facultative endosymbiotic associations.  相似文献   

10.
Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies.  相似文献   

11.
12.
杨雪  姜立云  陈静  乔格侠 《昆虫知识》2016,(6):1274-1287
【目的】蚜虫体内共生菌种类丰富,二者关系十分密切。几乎所有蚜虫都具有一类专性的初级内共生菌Buchnera aphidicola,二者的专性共生关系使蚜虫-Buchnera成为研究共生关系演化的理想模型。本研究对蚜虫-Buchnera在低级阶元水平上的"平行演化假说"进行了验证。【方法】选取在杨属Populus或柳属Salix植物上营同寄主全周期生活的毛蚜属Chaitophorus蚜虫作为研究对象,基于不同来源的分子标记(蚜虫线粒体基因、核基因和内共生菌基因),运用最大似然法和贝叶斯法重建蚜虫和Buchnera的系统树,并利用Tree Map、Jane和Para Fit检验二者是否具有协同系统发生关系。【结果】Tree Map和Jane分析检测到毛蚜属蚜虫与Buchnera具有显著的共成种信号,Para Fit分析结果表明二者的总体关联极为显著。【结论】毛蚜属蚜虫与其初级内共生菌Buchnera在种级及以下水平上符合"平行演化假说",并且二者的演化关系不会受到寄主植物差异的影响。  相似文献   

13.
Bacterial endosymbionts are widespread across several insect orders and are involved in interactions ranging from obligate mutualism to reproductive parasitism. Candidatus Blochmannia gen. nov. (Blochmannia) is an obligate bacterial associate of Camponotus and related ant genera (Hymenoptera: Formicidae). The occurrence of Blochmannia in all Camponotus species sampled from field populations and its maternal transmission to host offspring suggest that this bacterium is engaged in a long-term, stable association with its ant hosts. However, evidence for cospeciation in this system is equivocal because previous phylogenetic studies were based on limited gene sampling, lacked statistical analysis of congruence, and have even suggested host switching. We compared phylogenies of host genes (the nuclear EF-1alphaF2 and mitochondrial COI/II) and Blochmannia genes (16S ribosomal DNA [rDNA], groEL, gidA, and rpsB), totaling more than 7 kilobases for each of 16 Camponotus species. Each data set was analyzed using maximum likelihood and Bayesian phylogenetic reconstruction methods. We found minimal conflict among host and symbiont phylogenies, and the few areas of discordance occurred at deep nodes that were poorly supported by individual data sets. Concatenated protein-coding genes produced a very well-resolved tree that, based on the Shimodaira-Hasegawa test, did not conflict with any host or symbiont data set. Correlated rates of synonymous substitution (d(S)) along corresponding branches of host and symbiont phylogenies further supported the hypothesis of cospeciation. These findings indicate that Blochmannia-Camponotus symbiosis has been evolutionarily stable throughout tens of millions of years. Based on inferred divergence times among the ant hosts, we estimated rates of sequence evolution of Blochmannia to be approximately 0.0024 substitutions per site per million years (s/s/MY) for the 16S rDNA gene and approximately 0.1094 s/s/MY at synonymous positions of the genes sampled. These rates are several-fold higher than those for related bacteria Buchnera aphidicola and Escherichia coli. Phylogenetic congruence among Blochmannia genes indicates genome stability that typifies primary endosymbionts of insects.  相似文献   

14.
15.
Piffaretti, J., Vanlerberghe‐Masutti, F., Tayeh, A., Clamens, A.‐L., C?ur d’Acier, A. & Jousselin E. (2012). Molecular phylogeny reveals the existence of two sibling species in the aphid pest Brachycaudus helichrysi (Hemiptera: Aphididae). —Zoologica Scripta, 41, 266–280. Brachycaudus helichrysi is a worldwide polyphagous aphid pest that seriously damages its primary hosts (Prunus spp.) and the various cultivated plants among its secondary hosts (e.g. sunflower). A recent study of the Brachycaudus genus suggested that this species might encompass two differentiated lineages. We tested this hypothesis, by carrying out a phylogenetic study of this aphid pest based on worldwide sampling and the evaluation of mitochondrial, nuclear and Buchnera aphidicola DNA markers. We show that this species is actually an amalgamation of two sibling taxa, B. helichrysi H1 and B. helichrysi H2, that seem to have overlapping geographic ranges and herbaceous host plant preferences. These two taxa displayed levels of genetic divergence as great as those generally found between sister species in the Brachycaudus genus, suggesting that they actually correspond to two distinct species. Our phylogenetic reconstructions revealed a degree of incongruence between the topologies obtained with the aphid gene data set and with data for a DNA marker from its primary endosymbiont. We identified possible reasons for this observation and discuss the ecological and genotypic data suggesting that B. helichrysi H1 and B. helichrysi H2 have different life cycles.  相似文献   

16.
The African brood parasitic finches (Vidua spp.) are host specialists that mimic the songs and nestling mouth markings of their finch hosts (family Estrildidae). Although recent molecular analyses suggest rapid speciation associated with host switches in some members of this group, the association of different Vidua lineages with particular host genera suggests the possibility of cospeciation at higher levels in the host and parasite phylogenies. We compared a phylogeny of all Vidua species with a phylogeny of their estrildid finch hosts and compared divergence time estimates for the two groups. Basal divergences among extant members of the Vidulidae and among Vidua species are more recent than those among host genera and species, respectively, allowing a model of cospeciation to be rejected at most or all levels of the Vidua phylogeny. Nonetheless, some tests for cospeciation indicated significant congruence between host and parasite tree topologies. This result may be an artifact of clade-limited colonization. Host switches in parasitic finches have most often involved new hosts in the same or a closely related genus, an effect that increases the apparent congruence of host and parasites trees.  相似文献   

17.
Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids’ host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation.  相似文献   

18.
Parasite-host cospeciation has received much attention as an important mechanism in the diversification of phytophagous insects. However, studies have shown that for certain taxa, it is not host fidelity but host-switching that plays the critical role in speciation. Cinara are aphids (Insecta: Hemiptera: Aphididae: Lachninae) that feed exclusively on the woody parts of conifers of the Cupressaceae and Pinaceae. They are unusual aphids because most Pinaceae play host to several species of Cinara. The aphids show relatively strong host fidelity, and as a consequence historically have been treated based on the taxonomy of their hosts. The historical paradigm of aphid evolution implies that Cinara species have radiated to different parts of the same host species and/or speciated with their host. Using mitochondrial cytochrome oxidase 1 and nuclear elongation factor 1-alpha DNA sequences, we performed molecular phylogenetic analysis of Cinara species, concentrating on those associated with pinyon pines in the southwestern USA. We determined that switching hosts has played a key role in the speciation of the genus, reflected in the polyphyly of pinyon-feeding Cinara. Furthermore, species sharing a common feeding site on different hosts were more closely related to each other than to those sharing the same host but at different feeding sites, suggesting that feeding site fidelity plays a more important role in speciation than does host fidelity in general. This study also elucidated the primary taxonomy of various species: it suggested that Cinara rustica Hottes is a junior synonym of C. edulis (Wilson) and that C. wahtolca Hottes represents two species on the two different pinyon pine species, Pinus edulis Englem. and P. monophylla Torr. & Frem.  相似文献   

19.
Abstract.— Previous studies of phylogenetic congruence between aphids and their symbiotic bacteria ( Buchnera ) supported long-term vertical transmission of symbionts. However, those studies were based on distantly related aphids and would not have revealed horizontal transfer of symbionts among closely related hosts. Aphid species of the genus Uroleucon are closely related phylogenetically and overlap in geographic ranges, habitats, and parasitoids. To examine support for congruence of phylogenies of Buchnera and Uroleucon , sequences from four mitochondrial, one nuclear, and one endosymbiont gene ( trpB ) were obtained. Congruence of phylogenies based on pooled aphid genes with phylogenies based on trpB was highly significant: Most nodes resolved by trpB corresponded to nodes resolved by the pooled aphid genes. Furthermore, no nodes were both inconsistent between the trees and strongly supported in both trees. Two kinds of analyses testing the null hypothesis of perfect congruence between pairwise combinations of datasets and tree topologies were performed: the Kishino-Hasegawa test and the likelihood-ratio test. Both tests indicated significant disagreement among most pairwise combinations of mitochondrial, nuclear, and symbiont datasets. Because rampant recombination among mitochondrial genomes of different aphid species is unlikely, inaccurate assumptions in the evolutionary models underlying these tests appear to be causing the hypothesis of a shared history to be incorrectly rejected. Moreover, trpB was more consistent with the aphid genes as a set than any single aphid gene was with the others, suggesting that the symbionts show the same phylogeny as the aphids. Overall, analyses support the interpretation that symbionts and aphids have undergone strict cospeciation, with no horizontal transmission of symbionts even among closely related, ecologically similar aphid hosts.  相似文献   

20.
In a study of the evolution and distribution of avian retroviruses, we found avian sarcoma and leukosis virus (ASLV) gag genes in 26 species of galliform birds from North America, Central America, eastern Europe, Asia, and Africa. Nineteen of the 26 host species from whom ASLVs were sequenced were not previously known to contain ASLVs. We assessed congruence between ASLV phylogenies based on a total of 110 gag gene sequences and ASLV-host phylogenies based on mitochondrial 12S ribosomal DNA and ND2 sequences to infer coevolutionary history for ASLVs and their hosts. Widespread distribution of ASLVs among diverse, endemic galliform host species suggests an ancient association. Congruent ASLV and host phylogenies for two species of Perdix, two species of Gallus, and Lagopus lagopus and L. mutus also indicate an old association with vertical transmission and cospeciation for these ASLVs and hosts. An inference of horizontal transmission of ASLVs among some members of the Tetraoninae subfamily (grouse and ptarmigan) is supported by ASLV monophyletic groups reflecting geographic distribution and proximity of hosts rather than host species phylogeny. We provide a preliminary phylogenetic taxonomy for the new ASLVs, in which named taxa denote monophyletic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号