首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat). Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation.  相似文献   

2.
Although a number of obesity animal models have been reported, each model possesses different characteristics of obesity, suggesting care should be taken in choosing an animal model suitable for the experimental purpose. In this report, we fed 4-(young) and 52-week-old (middle-aged) C57BL/6J (B6) and young BALB/cA (BALB/c) mice with a high fat diet (HFD) for 9 weeks, and investigated the clinical and histological characteristics of obesity. In BALB/c mice, males gained more body weight and body fat weight and had higher energy intake than females by HFD feeding. Comparing the effect of HFD feeding between the strains of mice, BALB/c male mice accumulated more hepatic lipid than B6 male mice. In addition, middle-aged B6 mice increased the ratio of fat to body weight and hepatic lipid accumulation more than young mice. In conclusion, the characteristics of obesity induced by HFD feeding were influenced by the sex, strain and age of mice. Sex steroid hormones, hepatic lipid metabolism and systemic metabolism might be involved in these factors. The basic data in this study will be useful for the development of animal models of high fat diet-induced obesity.  相似文献   

3.
The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli (“browning process”). Brown-like adipocytes that appear in white fat depots have been called “brite” (from brown-in-white) or “beige” adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

4.
Recent epidemiological and animal studies have led to the hypothesis that low dietary calcium intakes contribute to obesity. Here, we evaluated whether calcium influenced the body weight of normal-weight and obese rodents. All experiments involved female C57BL/6J mice or Sprague-Dawley rats fed normal- or high-energy-density diets (3.8 o 4.7 kcal/g). Calcium intake was manipulated by allowing mice to drink sweetened 30 mM CaCl(2) solution or feeding mice and rats diets differing in calcium content (0.2%, 0.6%, o 1.8% Ca(2+)). Blood samples were taken from rats to confirm that the diets had their intended effects on metabolism. There were no effects of the calcium manipulations on energy intake, body weight, or carcass fat content and no simple elation between calciotropic hormones and body weight. One experiment found a significant decrease in body weight gain of lean and obese rats fed the 1.8% Ca(2+) diet, but we suspect that this was due to forced consumption of the unpalatable diet, reducing growth. These studies provide little support for the hypothesis that dietary calcium contributes to the etiology or maintenance of obesity.  相似文献   

5.
Monogenic disorders of obesity and body fat distribution.   总被引:2,自引:0,他引:2  
Recently, great progress has been made towards understanding the molecular basis of body fat regulation. Identification of mutations in several genes in spontaneous monogenic animal models of obesity and development of transgenic models have indicated the physiological roles of many genes in the regulation of body fat distribution. In humans, mutations in leptin, leptin receptor, prohormone convertase 1 (PC1), pro-opiomelanocortin (POMC), melanocortin 4-receptor (MC4-R), and peroxisome proliferator-activated receptor (PPAR) gamma2 genes have been described in patients with severe obesity. Most of these obesity disorders exhibit a distinct phenotype with varying degrees of hypothalamic and pituitary dysfunction and a recessive inheritance, whereas MC4-R mutation has a nonsyndromic phenotype with dominant inheritance. These mutations suggest the critical role of central signaling systems composed of leptin/leptin receptor and alpha-melanocyte stimulating hormone/MC4-R in human energy homeostasis. Although the genetic basis of monogenic disorders of body fat distribution, such as congenital generalized lipodystrophy and familial partial lipodystrophy, Dunnigan variety, is still unknown, the genes for these have recently been localized to chromosomes 9q34 and 1q21-22, respectively. The advances in our knowledge of the phenotypic manifestations and underlying molecular mechanisms of genetic body fat disorders may lead to better treatment and prevention of obesity and other disorders of adipose tissue in the future.  相似文献   

6.

Background

Visceral fat (VF) accretion is a hallmark of aging in humans. Epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes, cardiovascular disease, metabolic syndrome and death.

Methods

Studies utilizing novel rodent models of visceral obesity and surgical strategies in humans have been undertaken to determine if subcutaneous (SC) abdominal or VF are causally linked to age-related diseases.

Results

Specific depletion or expansion of the VF depot using genetic or surgical tools in rodents has been shown to have direct effects on disease risk. In contrast, surgically removing large quantities of SC fat does not consistently improve metabolic parameters in humans or rodents, while benefits were observed with SC fat expansion in mice, suggesting that SC fat accrual is not an important contributor to metabolic decline. There is also compelling evidence in humans that abdominal obesity is a stronger risk factor for mortality risk than general obesity. Likewise, we have shown that surgical removal of VF improves mean and maximum lifespan in rats, providing the first causal evidence that VF depletion may be an important underlying cause of improved lifespan with caloric restriction.

General significance

This review provides both corollary and causal evidence for the importance of accounting for body fat distribution, and specifically VF, when assessing disease and mortality risk. Given the hazards of VF accumulation on health, treatment strategies aimed at selectively depleting VF should be considered as a viable tool to effectively reduce disease risk in humans.  相似文献   

7.
Leptin, the ob gene product, is involved in the regulation of body weight in rodents, primates and humans. It provides a molecular basis for the lipostatic theory of the regulation of energy balance. White adipose tissue and placenta are the main sites of leptin synthesis. There is also evidence of ob gene expression in brown fat. Leptin seems to play a key role in the control of body fat stores by coordinated regulation of feeding behaviour, metabolic rate, autonomic nervous system regulation and body energy balance. Apart from the function of leptin in the central nervous system on the regulation of energy balance, it may well be one of the hormonal factors that signal to the brain the body's readiness for sexual maturation and reproduction. During late pregnancy and at birth when maternal fat stores have been developed, leptin levels are high. During these developmental stages leptin could be a messenger molecule signalling the adequacy of the fat stores for reproduction and maintenance of pregnancy. At later stages of gestation leptin could signal the expansion of fat stores in order to prepare the expectant mother for the energy requirements of full-term gestation, labour and lactation. Leptin serum concentrations change during pubertal development in rodents, primates and humans. In girls, leptin serum concentrations increase dramatically as pubertal development proceeds. The pubertal rise in leptin levels parallels the increase in body fat mass. In contrast, leptin levels increase shortly before and during the early stages of puberty in boys and decline thereafter. Testosterone has been found to suppress leptin synthesis by adipocytes both in vivo and in vitro. The decline of leptin levels in late puberty in boys accompanies increased androgen production during that time and most likely reflects suppression of leptin by testosterone and a decrease in fat mass and relative increase in muscle mass during late puberty in males. This overview focuses on those topics of leptin research which are of particular interest in reproductive and adolescent medicine.  相似文献   

8.
The energetic regulation of ovulation: a realistic role for body fat   总被引:1,自引:0,他引:1  
This review weighs the evidence for and against the hypothesis that ovulation is regulated by a critical amount of body fat. The evidence supporting this hypothesis is correlative, and most of it stems from observations made in humans. On balance, the evidence from human studies does not support the hypothesis, however, and the results of animal studies argue strongly against it. In the latter regard, a variety of experimental approaches have been tried in both adult and peripubertal females of several species, and the results almost uniformly show little relationship between fatness and ovulation. There is no doubt that ovulation can be regulated somehow in relation to whole-body energy balance and that fat stores are an important component of energy balance, but there is no reason to accord body fat a direct causal role in regulating ovulation.  相似文献   

9.
Boghossian S  Lecklin A  Torto R  Kalra PS  Kalra SP 《Peptides》2005,26(8):1512-1519
Unexpended energy is stored as fat in the body and increased rate of fat accretion culminates in obesity. Obesity increases the risks of many diseases several folds and shortens life span. A progressive deficit in the central feedback effects of leptin, a peptide produced by fat cells and hypothalamus, results in increased weight gain and obesity. This article summarizes our experimental findings to show that a stable increase in leptin availability in the hypothalamus alone with the aid of leptin gene therapy suppresses fat accretion and metabolic hormones for nearly the lifetime of laboratory rodents. Consequently, central leptin gene therapy is a novel modality that offers a viable therapeutic option to reduce fat depots and attendant metabolic sequelae implicated in obesity-related illnesses.  相似文献   

10.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

11.
Social and psychological factors interact with genetic predisposition and dietary habit in determining obesity. However, relatively few pre-clinical studies address the role of psychosocial factors in metabolic disorders. Previous studies from our laboratory demonstrated in male mice: 1) opposite status-dependent effect on body weight gain under chronic psychosocial stress; 2) a reduction in body weight in individually housed (Ind) male mice. In the present study these observations were extended to provide a comprehensive characterization of the metabolic consequences of chronic psychosocial stress and individual housing in adult CD-1 male mice. Results confirmed that in mice fed standard diet, dominant (Dom) and Ind had a negative energy balance while subordinate (Sub) had a positive energy balance. Locomotor activity was depressed in Sub and enhanced in Dom. Hyperphagia emerged for Dom and Sub and hypophagia for Ind. Dom also showed a consistent decrease of visceral fat pads weight as well as increased norepinephrine concentration and smaller adipocytes diameter in the perigonadal fat pad. On the contrary, under high fat diet Sub and, surprisingly, Ind showed higher while Dom showed lower vulnerability to obesity associated with hyperphagia. In conclusion, we demonstrated that social status under chronic stress and individual housing deeply affect mice metabolic functions in different, sometime opposite, directions. Food intake, the hedonic response to palatable food as well as the locomotor activity and the sympathetic activation within the adipose fat pads all represent causal factors explaining the different metabolic alterations observed. Overall this study demonstrates that pre-clinical animal models offer a suitable tool for the investigation of the metabolic consequences of chronic stress exposure and associated psychopathologies.  相似文献   

12.
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross‐breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single‐gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity‐related phenotypes from 50 genome‐wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http:obesitygene.pbrc.edu .  相似文献   

13.
Retrospective and prospective studies show that lean mass or strength is positively associated with metabolic health. Mice deficient in myostatin, a growth factor that negatively regulates skeletal muscle mass, have increased muscle and body weights and are resistant to diet-induced obesity. Their leanness is often attributed to higher energy expenditure in the face of normal food intake. However, even obese animals have an increase in energy expenditure compared to normal weight animals suggesting this is an incomplete explanation. We have previously developed a computational model to estimate energy output, fat oxidation and respiratory quotient from food intake and body composition measurements to more accurately account for changes in body composition in rodents over time. Here we use this approach to understand the dynamic changes in energy output, intake, fat oxidation and respiratory quotient in muscular mice carrying a dominant negative activin receptor IIB expressed specifically in muscle. We found that muscular mice had higher food intake and higher energy output when fed either chow or a high-fat diet for 15 weeks compared to WT mice. Transgenic mice also matched their rate of fat oxidation to the rate of fat consumed better than WT mice. Surprisingly, when given a choice between high-fat diet and Ensure® drink, transgenic mice consumed relatively more calories from Ensure® than from the high-fat diet despite similar caloric intake to WT mice. When switching back and forth between diets, transgenic mice adjusted their intake more rapidly than WT to restore normal caloric intake. Our results show that mice with myostatin inhibition in muscle are better at adjusting energy intake and output on diets of different macronutrient composition than WT mice to maintain energy balance and resist weight gain.  相似文献   

14.
Parabiosis studies with obese rodents demonstrated that circulating factors are involved in the long-term control of food intake and energy balance. More than 40 years ago it was hypothesized that rats made obese by hypothalamic or dietary means, as well as genetically obese fa/fa rats and db/db mice, produce a circulating factor that either inhibits food intake or acts metabolically to reduce the fat content of non-obese ad libitum-fed partners. However, none of these obese rodents showed a significant change in weight when parabiosed to a normal animal. It was therefore postulated that these obese rodents produced a circulating lipostatic factor but were unable to respond to it. In contrast, genetically obese ob/ob mice were thought to be deficient in the circulating signal, as they lost weight when parabiosed to lean or obese db/db mice. The discovery of leptin suggested that the circulating lipostatic signal had been identified. However, a closer look at the outcome of the parabiotic studies reveals that leptin alone does not explain all of the findings of the parabiotic experiments. Another (or more than one) as yet unidentified factor(s) may be involved in energy balance regulation. The evidence for the existence of further leptin-like hormones comes from observations in which the direct effect of leptin has been eliminated or can be excluded.  相似文献   

15.
Enlarged fat cells exhibit modified metabolic capacities, which could be involved in the metabolic complications of obesity at the whole body level. We show here that sterol regulatory element-binding protein 2 (SREBP-2) and its target genes are induced in the adipose tissue of several models of rodent obesity, suggesting cholesterol imbalance in enlarged adipocytes. Within a particular fat pad, larger adipocytes have reduced membrane cholesterol concentrations compared with smaller fat cells, demonstrating that altered cholesterol distribution is characteristic of adipocyte hypertrophy per se. We show that treatment with methyl-beta-cyclodextrin, which mimics the membrane cholesterol reduction of hypertrophied adipocytes, induces insulin resistance. We also produced cholesterol depletion by mevastatin treatment, which activates SREBP-2 and its target genes. The analysis of 40 adipocyte genes showed that the response to cholesterol depletion implicated genes involved in cholesterol traffic (caveolin 2, scavenger receptor BI, and ATP binding cassette 1 genes) but also adipocyte-derived secretion products (tumor necrosis factor alpha, angiotensinogen, and interleukin-6) and proteins involved in energy metabolism (fatty acid synthase, GLUT 4, and UCP3). These data demonstrate that altering cholesterol balance profoundly modifies adipocyte metabolism in a way resembling that seen in hypertrophied fat cells from obese rodents or humans. This is the first evidence that intracellular cholesterol might serve as a link between fat cell size and adipocyte metabolic activity.  相似文献   

16.
While the phenomenon linking the early nutritional environment to disease susceptibility exists in many mammalian species, the underlying mechanisms are unknown. We hypothesized that nutritional programming is a variable quantitative state of gene expression, fixed by the state of energy balance in the neonate, that waxes and wanes in the adult animal in response to changes in energy balance. We tested this hypothesis with an experiment, based upon global gene expression, to identify networks of genes in which expression patterns in inguinal fat of mice have been altered by the nutritional environment during early post-natal development. The effects of over- and under-nutrition on adiposity and gene expression phenotypes were assessed at 5, 10, 21 days of age and in adult C57Bl/6J mice fed chow followed by high fat diet for 8 weeks. Under-nutrition severely suppressed plasma insulin and leptin during lactation and diet-induced obesity in adult mice, whereas over-nourished mice were phenotypically indistinguishable from those on a control diet. Food intake was not affected by under- or over-nutrition. Microarray gene expression data revealed a major class of genes encoding proteins of the caveolae and cytoskeleton, including Cav1, Cav2, Ptrf (Cavin1), Ldlr, Vldlr and Mest, that were highly associated with adipose tissue expansion in 10 day-old mice during the dynamic phase of inguinal fat development and in adult animals exposed to an obesogenic environment. In conclusion gene expression profiles, fat mass and adipocyte size in 10 day old mice predicted similar phenotypes in adult mice with variable diet-induced obesity. These results are supported by phenotypes of KO mice and suggest that when an animal enters a state of positive energy balance adipose tissue expansion is initiated by coordinate changes in mRNA levels for proteins required for modulating the structure of the caveolae to maximize the capacity of the adipocyte for lipid storage.  相似文献   

17.
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.  相似文献   

18.
The mechanism by which mice, exposed to the cold, mobilize endogenous or exogenous fuel sources for heat production is unknown. To address this issue we carried out experiments using 3 models of obesity in mice: C57BL/6J+/+ (wild-type B6) mice with variable susceptibility to obesity in response to being fed a high-fat diet (HFD), B6. Ucp1-/- mice with variable diet-induced obesity (DIO) and a deficiency in brown fat thermogenesis and B6. Lep-/- with defects in thermogenesis, fat mobilization and hyperphagia. Mice were exposed to the cold and monitored for changes in food intake and body composition to determine their energy balance phenotype. Upon cold exposure wild-type B6 and Ucp1-/- mice with diet-induced obesity burned endogenous fat in direct proportion to their fat reserves and changes in food intake were inversely related to fat mass, whereas leptin-deficient and lean wild-type B6 mice fed a chow diet depended on increased food intake to fuel thermogenesis. Analysis of gene expression in the hypothalamus to uncover a central regulatory mechanism revealed suppression of the Npvf gene in a manner that depends on the reduced ambient temperature and degree of exposure to the cold, but not on adiposity, leptin levels, food intake or functional brown fat.  相似文献   

19.
POMP, DANIEL AND MERLYN K. NIELSEN. Quantitative genetics of energy balance—lessons from animal models. Obes Res. 1999;7:106–110. Evidence for quantitative genetic variation in components of energy balance in animals is overwhelming. Much of this evidence is drawn from livestock species and relevant rodent models, especially long-term selection lines. This minireview summarizes findings from several animal studies that have characterized quantitative genetic variation in energy intake and energy expenditure. Applications of this information toward understanding and treatment of human obesity are explored.  相似文献   

20.
Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号