首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several molecular techniques have been used to differentiate species or genetic lineages of microorganisms prior to sequencing. Among them, BOX‐ and ERIC‐PCRs may provide specific banding patterns for different species, allowing its differentiation. Therefore, the objective of this study was to evaluate these techniques as a tool for differentiation of phylogenetic lineages belonging to the Colletotrichum gloeosporioides species complex associated with cassava anthracnose disease. Sets of BOX‐ and ERIC‐PCR primers were used to assess the differentiation of lineages belonging to the complex with 81 C. gloeosporioides sensu lato (s.l.) isolates from different cassava producing regions. Some were identified by sequencing, such as Colletotrichum fructicola, Colletotrichum tropicale, C. gloeosporioides s.s, Colletotrichum theobromicola, Colletotrichum siamense, Colletotrichum brevisporum and Colletotrichum sichuanensis. The primers were able to amplify DNA fragments from all isolates. The ERIC‐PCR presented a wider range of banding patterns in comparison to BOX‐PCR, providing better differentiation of the individuals, as well as a higher correlation with the phylogenetic data was obtained by ERIC‐PCR and the combined data set for “BOX‐/ERIC‐PCRs,” inferred by Mantel test. However, the use of concatenated data (BOX‐/ERIC‐PCRs) reduced the discriminatory capacity presented by ERIC‐PCR alone, probably due to the lowest resolution of BOX‐PCR. Therefore, ERIC‐PCR technique enabled efficient differentiation of isolates belonging to the C. gloeosporioides complex and can be used to analyse multiple isolates in a collection and also being an important tool as a guide in the decision‐making process prior to sequencing. Based on this methodology, it was possible to identify two new species associated with cassava anthracnose disease, C. brevisporum and C. sichuanensis, being the first report of these two species associated with cassava anthracnose disease in Brazil.  相似文献   

2.
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá. ITS and 5'-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5'-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5'-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.  相似文献   

3.
Most aphids are highly specialized on one or two related plant species and generalist species often include sympatric populations adapted to different host plants. Our aim was to test the hypothesis of the existence of host specialized lineages of the aphid Melanaphis sacchari in Reunion Island. To this end, we investigated the genetic diversity of the aphid and its association with host plants by analyzing the effect of wild sorghum Sorghum bicolor subsp. verticilliflorum or sugarcane as host plants on the genetic structuring of populations and by performing laboratory host transfer experiments to detect trade-offs in host use. Genotyping of 31 samples with 10 microsatellite loci enabled identification of 13 multilocus genotypes (MLG). Three of these, Ms11, Ms16 and Ms15, were the most frequent ones. The genetic structure of the populations was linked to the host plants. Ms11 and Ms16 were significantly more frequently observed on sugarcane, while Ms15 was almost exclusively collected in colonies on wild sorghum. Laboratory transfer experiments demonstrated the existence of fitness trade-offs. An Ms11 isofemale lineage performed better on sugarcane than on sorghum, whereas an Ms15 lineage developed very poorly on sugarcane, and two Ms16 lineages showed no significant difference in performances between both hosts. Both field and laboratory results support the existence of host plant specialization in M. sacchari in Reunion Island, despite low genetic differentiation. This study illustrates the ability of asexual aphid lineages to rapidly undergo adaptive changes including shifting from one host plant to another.  相似文献   

4.
Anthracnose ( Colletotrichum spp.) is an important disease of olive fruits. Diversity and biogeographic relationships of the olive anthracnose pathogens in the Algarve (Portugal) were investigated, along with host association patterns and disease levels during 2004–2007, to test the hypothesis that this region is a host–pathogen diversity hot spot. Diverse Colletotrichum acutatum and Colletotrichum gloeosporioides populations were identified based on rRNA-internal transcribed spacer and partial β-tubulin 2 gene sequences of 95 isolates. Spatial and temporal variations in the occurrence of the eight genetic entities of the pathogens were linked to olive biogeography. Disease occurrence patterns suggest that C. acutatum populations are more stable pathogens, while C. gloeosporioides populations appear to be more influenced by favourable conditions. Three unique C. acutatum populations were identified, but none of the eight populations were dominant, with the most frequent type representing only 27%. Thus, the population structure of olive anthracnose pathogens in the Algarve is distinct from other parts of Portugal and other world locations, where only one or two genetic entities are dominant. This pattern and level of genetic diversity in a restricted area, where oleaster (wild olive tree), ancient landraces and modern cultivars of olive occur in close proximity, suggests the Algarve as a centre of diversity of the anthracnose pathogens and corroborates recent work suggesting western Mediterranean as an important centre of olive diversity and domestication.  相似文献   

5.
The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. Wheat curl mite has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically distinct lineages with divergent host‐acceptance traits, ranging from highly polyphagous to host‐specific. This diversity of WCM genotypes and host‐acceptance phenotypes in Europe, the presumed native range of WCM, raises questions about the lineage identities of invasive WCM populations on other continents and their relationships to European lineages. The goals of this study were to examine the global presence of WCM and determine the relatedness of lineages established in different continents, on the basis of phylogenetic analyses of mitochondrial and nuclear DNA sequence data. Host‐range bioassays of a highly polyphagous WCM lineage were performed to supplement existing data on this lineage's ability to colonise graminaceous and non‐graminaceous hosts. Invasive WCM populations in North and South America and Australia assorted with the only three known polyphagous and pestiferous WCM lineages (‘MT‐1’, ‘MT‐7’ and ‘MT‐8’) from a total of eight currently described lineages. These results show that the most polyphagous lineages were more successful colonisers and reflect a need for extensive surveys for WCM on both crops and wild grass species in invaded continents. The most invasive lineage (‘MT‐1’) was shown to successfully colonise all 10 plant species tested in three families and has spread to North and South America and Australia from its presumed origins in Eurasia.  相似文献   

6.
I argue that nonequilibrium allele frequency dynamics due to coevolution can drive the evolution of specialized host races in parasites capable of host choice-for example, herbivorous insects or parasitoids. The proposed mechanism does not require genetic trade-offs in performance on different host species. It is based on the premise that the ability of the parasite to overcome the resistance of different host species is to a large degree genetically independent-that is, controlled by different loci. The intuitive rationale is that the genetic lineage of a parasite that evolves host preference becomes more consistently exposed to selection for performance on its preferred host. Such a choosy lineage can thus coevolve faster in response to evolving host defenses than a generalist lineage distributed among several host species. Given genetic variation in host preference, an initially generalist parasite population evolves toward specialized host races, each choosing one host species. This idea is supported by a series of multilocus models of coevolution between a parasite and two host species, in which the parasite virulence on each host is affected by a different set of loci and an additional locus or two loci control host choice.  相似文献   

7.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

8.
Colletotrichum lupini, the causative agent of lupin anthracnose, affects lupin cultivation worldwide. Understanding its population structure and evolutionary potential is crucial to design successful disease management strategies. The objective of this study was to employ population genetics to investigate the diversity, evolutionary dynamics, and molecular basis of the interaction of this notorious lupin pathogen with its host. A collection of globally representative C. lupini isolates was genotyped through triple digest restriction site-associated DNA sequencing, resulting in a data set of unparalleled resolution. Phylogenetic and structural analysis could distinguish four independent lineages (I–IV). The strong population structure and high overall standardized index of association (d) indicates that C. lupini reproduces clonally. Different morphologies and virulence patterns on white lupin (Lupinus albus) and Andean lupin (Lupinus mutabilis) were observed between and within clonal lineages. Isolates belonging to lineage II were shown to have a minichromosome that was also partly present in lineage III and IV, but not in lineage I isolates. Variation in the presence of this minichromosome could imply a role in host–pathogen interaction. All four lineages were present in the South American Andes region, which is suggested to be the centre of origin of this species. Only members of lineage II have been found outside South America since the 1990s, indicating it as the current pandemic population. As a seedborne pathogen, C. lupini has mainly spread through infected but symptomless seeds, stressing the importance of phytosanitary measures to prevent future outbreaks of strains that are yet confined to South America.  相似文献   

9.
Phytophagous insects with wide host ranges often exhibit host‐associated genetic structure. We used microsatellite analysis to assess the population structure of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), a serious pest on many economically important crops worldwide. We sampled aphids from five host plant species in Iran and detected strong population subdivision, with an overall multilocus FST of 0.191. The matrix of pairwise FST values indicated that differentiation between populations collected from different hosts was significantly stronger than between populations from the same hosts. Host‐associated differentiation was further supported by Bayesian clustering analyses, which grouped all samples from cotton together with aubergine, and all samples from cucumber together with pumpkin and hibiscus. This adds to the growing body of evidence that many seemingly generalist aphids are in fact an assemblage of host‐specialized lineages. Although we detected a clear genetic signature of clonal reproduction, the genotypic diversity of A. gossypii in Iran is much higher than in other parts of the world. Particularly samples from cotton exhibited a surprisingly high genotypic diversity, suggesting that many lineages on this host are cyclical parthenogens that engage in regular bouts of sexual reproduction.  相似文献   

10.
The Australian populations of the green-eyed tree frog Litoria genimaculata consist of a northern and southern genetic lineage that meet in a mosaic contact zone comprising two independent areas of contact: one where the main ranges of the lineages overlap, and the second where a population of the southern lineage is isolated within the range of the northern lineage. A recent study failed to find significant reproductive isolation between the main ranges of the two lineages, despite deep genetic divergence, partial postzygotic isolation, and call differences. The study did, however, demonstrate rapid phenotypic divergence and speciation of the isolated population of the southern lineage from both the parapatric northern lineage and from the allopatric, but genetically similar, main range of the southern lineage. Herein, the isolated population of the southern lineage is described as a distinct species, Litoria myola sp. nov. , whereas the remainder of the southern lineage and the northern lineage are retained as a single, paraphyletic species, Litoria genimaculata . Resolving this unusual systematic situation demonstrates the value of using multiple lines of evidence in delimiting species. Litoria myola sp. nov. has a very small distribution and population size and warrants a Critically Endangered listing (B1, 2) under IUCN criteria. Threats and management recommendations are outlined, and the conservation of hybrid zones as areas of evolutionary novelty is discussed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 549–563.  相似文献   

11.
Ceratocystis fimbriata is a serious fungal pathogen on a wide range of plants, but many cryptic species within C. fimbriata are apparently host‐specialized. Anchor polymerase chain reaction (PCR) and simple sequence repeat (SSR) enriched libraries were used to develop 16 microsatellite markers for C. fimbriata. All markers were polymorphic when tested against isolates from four host‐specialized lineages of the pathogen. These markers will be valuable for phylogenetic and population genetic studies, as well as for tracking accidental introductions of host‐specialized forms of the pathogen.  相似文献   

12.
Mitochondrial DNA analysis has revealed two distinct phylogenetic lineages within the ecotoxological sentinel earthworm model Lumbricus rubellus Hoffmeister, 1843. The existence of these lineages could complicate ecotoxicological studies that use the species as a sentinel for soil contamination testing, as they may respond differently to contamination; however, as mitochondrial haplotypes are not always expected to segregate in the same way as chromosomal DNA in natural populations, we further investigated this issue by using nuclear DNA markers (microsatellites) to measure genetic diversity, differentiation, and gene flow in sympatric populations of the two L. rubellus lineages at two sites in South Wales. Our results show that sympatric populations of the two lineages are more genetically differentiated than geographically distant populations of the same lineage, and Bayesian clustering analysis revealed no evidence of gene flow between the lineages at either site. Additionally, DNA sequencing of these microsatellite loci uncovered substantial differentiation between lineages at homologous flanking regions. Overall our findings indicate a high degree of nuclear genetic differentiation between the two lineages of L. rubellus, implying reproductive isolation at the two study sites and therefore the potential existence of cryptic species. The existence of two cryptic taxa has major implications for the application of L. rubellus as an ecotoxicological sentinel. It may therefore be necessary to consider the lineages as separate taxa during future ecotoxicological studies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 780–795.  相似文献   

13.
Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation.  相似文献   

14.
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther‐smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant–pathogen pairs of anther‐smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC‐RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host–pathogen pairs contribute to a better understanding of co‐evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.  相似文献   

15.
Cryptic structure of species complexes confounds an accurate accounting of biological diversity in natural systems. Also, cryptic sibling species often become specialized to different ecological conditions, for instance, with host specialization by cryptic parasite species. The fungus Microbotryum violaceum causes anther smut disease in plants of Caryophyllaceae, and the degree of specialization and gene flow between strains on different hosts have been controversial in the literature. We conducted molecular phylogenetic analyses on M. violaceum from 23 host species and different geographic origins using three single-copy nuclear genes (beta-tub, gamma-tub, and Ef1alpha). Congruence between the phylogenies identified several lineages that evolved independently for a long time. The lineages had overlapping geographic ranges but were highly specialized on different hosts. These results thus suggest that M. violaceum is a complex of highly specialized sibling species. Two incongruencies between the individual gene phylogenies and one intragene recombination event were detected at basal nodes, suggesting ancient introgression events or speciation events via hybridizations. However, incongruencies and recombination were not detected among terminal branches, indicating that the potentials for cross-infection and experimental hybridization are often not sufficient to suggest that introgressions would likely persist in nature.  相似文献   

16.
Mathews LM 《Molecular ecology》2006,15(13):4049-4063
Recent investigations suggest that marine biodiversity may be much higher than earlier estimates, and an important hidden source of diversity in marine systems is the phenomenon of cryptic species complexes. Such complexes are informative models for research into the evolutionary processes that govern species compositions of marine fauna. The snapping shrimp genera Alpheus and Synalpheus are known to harbour large numbers of cryptic species; here, I characterize the genetic structure of the Alpheus armillatus species complex in the northern Caribbean, west Atlantic, and Gulf of Mexico using mitochondrial and nuclear sequence data. Over this geographical region, the complex harbours at least three lineages that are probable reproductively isolated species; all major lineages diverged subsequent to the close of the Isthmus of Panama. Only one lineage was present in the Gulf of Mexico, whereas outside the Gulf of Mexico there was no clear tendency for lineage dominance by geographical region, as most sites were populated by shrimp from at least two lineages. However, within each lineage, there was strong evidence of population genetic differentiation between geographical regions. All lineages showed strong signals of demographic expansion, and one lineage showed sharply reduced genetic diversity, suggestive of past population bottlenecks or recently founded populations with low gene flow from other sites. These results show that evolutionary processes leading to divergence and speciation have been common and recent in the snapping shrimp, and suggest that connectivity among shrimp populations may be limited.  相似文献   

17.
The avian haemosporidian parasite Haemoproteus majoris has been reported to infect a wide range of passerine birds throughout the Holarctic ecozone. Five cytochrome b (cyt b) lineages have been described as belonging to the morphological species H. majoris, and these form a tight phylogenetic cluster together with 13 undescribed lineages that differ from each other by < 1.2% in sequence divergence. Records in a database (MalAvi) that contains global findings of haemosporidian lineages generated by universal primers suggest that these lineages vary substantially in host distribution. We confirm this pattern in a data set collected at Lake Kvismaren, Sweden, where three of the generalist lineages have local transmission. However, whether these lineages represent intraspecific mitochondrial diversity or clusters of cryptic species has previously not been examined. In this study, we developed novel molecular markers to amplify the partial segments of four nuclear genes to determine the level of genetic diversity and gene phylogenies among the five morphologically described cyt b lineages of H. majoris. All five cyt b lineages were strongly associated with unique nuclear alleles at all four nuclear loci, indicating that each mitochondrial lineage represents a distinct biological species. Within lineages, there was no apparent association between nuclear alleles and host species, indicating that they form genetically unstructured populations across multiple host species.  相似文献   

18.
We fit a molecular data set, consisting of the rpL16 cpDNA marker and eight microsatellite loci, to the isolation-with-migration model as implemented in IM a to test a well-supported phylogenetic hypothesis of relationships within the Carex macrocephala species complex (Cyperaceae). The phylogenetic hypothesis suggests C. macrocephala from North America is reciprocally monophyletic and is sister to a reciprocally monophyletic clade of C. kobomugi . The North American C. macrocephala and C. kobomugi clade form a sister clade with a lineage of Asian C. macrocephala , thereby forming a paraphyletic C. macrocephala species. Not only does the phylogenetic hypothesis suggest C. macrocephala is paraphyletic, but it also suggests that the two lineages which share a partially overlapping distribution, Asian C. macrocephala and C. kobomugi , are not the most closely related. To test these relationships, we used coalescent-based population genetic models to infer divergence time for each lineage pair within the species complex. The coalescent-based models account for the stochastic forces which drive population divergence, and can account for the lineage sorting that occurs prior to lineage divergence. A drawback to phylogenetic-based phylogeographical analyses is that they do not account for stochastic lineage sorting that occurs between gene divergence and lineage divergence. By comparing the relative divergence time of the three main lineages within this group, Asian C. macrocephala , North American C. macrocephala , and C. kobomugi , we concluded that the phylogenetic hypothesis is incorrect, and the divergence between these lineages occurred during the Late Pleistocene epoch.  相似文献   

19.
Modern multilocus molecular techniques are a powerful tool in the detection and analysis of cryptic taxa. However, its shortcoming is that with allopatric populations it reveals phylogenetic lineages, not biological species. The increasing power of coalescent multilocus analysis leads to the situation in which nearly every geographically isolated or semi‐isolated population can be identified as a lineage and therefore raised to species rank. It leads to artificial taxonomic inflation and as a consequence creates an unnecessary burden on the conservation of biodiversity. To solve this problem, we suggest combining modern lineage delimitation techniques with the biological species concept. We discuss several explicit principles on how genetic markers can be used to detect cryptic entities that have properties of biological species (i.e. of actually or potentially reproductively isolated taxa). Using these principles we rearranged the taxonomy of the butterfly species close to Polyommatus (Agrodiaetus) ripartii. The subgenus Agrodiaetus is a model system in evolutionary research, but its taxonomy is poorly elaborated because, as a rule, most of its species are morphologically poorly differentiated. The taxon P. (A.) valiabadi has been supposed to be one of the few exceptions from this rule due to its accurately distinguishable wing pattern. We discovered that in fact traditionally recognized P. valiabadi is a triplet of cryptic species, strongly differentiated by their karyotypes and mitochondrial haplotypes.  相似文献   

20.
Malus sieversii, a wild progenitor of the domesticated apple, is an endangered species and is assigned second conservation priority by the China Plant Red Data Book. It is urgent to carry out in situ conservation of this species, but previous studies have not identified evolutionarily significant units (ESUs) for conservation management. In this study, we investigated the genetic diversity and relationships of six M. sieversii populations from China using integrated analysis of microsatellite (nSSR) data, genome‐wide SNPs and previous results in order to propose a reasonable conservation management. The results showed that levels of genetic diversity were inconsistently reflected by our nSSR and previous studies, suggesting that indices of genetic diversity are not effective to identify priority conservation areas for M. sieversii. Based on the selection criteria of ESUs for endangered species conservation, ESUs should reflect lineage divergence, geographical separation and different adaptive variation. Our phylogenetic tree based on genome‐wide SNPs yielded a clear relationship of divergent lineages among M. sieversii populations, leading to new different from those of previous studies. Three independent lineages, including the pairs of populations Huocheng‐Yining, Gongliu‐Xinyuan and Tuoli‐Emin, were identified. The geographic distances between populations among the different phylogenetic lineages were much greater than those within the same phylogenetic lineage. A cluster analysis on environmental variables showed that the three independent lineages inhabit different environmental conditions, suggesting that they may have adapted to different environments. Based on the results, we propose that three independent ESUs should be recognized as conservation units for M. sieversii in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号