首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous reports from this laboratory have demonstrated that lamin B is reversibly methylesterified in a cell cycle-dependent manner. The site of this methylation, however, was not identified. In this report, we describe a single major methylated product obtained following reversed-phase high-performance liquid chromatographic analysis of peptides generated by proteolytic digestion of lamin B from rat liver nuclear envelopes. This peptide was retained on a lamin B COOH-terminal-specific antibody-affinity column, and COOH-terminal localization was confirmed by amino acid sequencing. Two other COOH-terminal peptides were found but were not methylated and differed in sequence by at least a single residue from the methylated peptide, indicating the existence of two lamin B gene products. Tetrapeptides, representing the putative mature COOH termini of lamin B, K-ras-2A, and unprocessed lamin A, were synthesized with or without farnesyl modification of the COOH-terminal cysteines. All three farnesylated peptides served as substrates for the partially purified lamin B methyltransferase with apparent Km values of 4.5, 0.69, and 21 microM, respectively. Nonfarnesylated peptides were not substrates for the enzyme. The three farnesylated peptides were also effective to varying degrees at inhibiting the methylation of lamin B and other cellular proteins in cell lysates.  相似文献   

2.
3.
4.
Oxidation of low density lipoprotein (LDL) may be atherogenic, but radical-initiated oxidation of its apoprotein B-100 (apoB) has been little studied. Transition metal ions iron and copper are candidates for mediating radical oxidation of LDL in vivo. Therefore, we studied the copper-ion-induced oxidation of apoB in human LDL. Using HPLC methods developed in our recent work, we studied the destruction of native and the generation of six oxidised amino acids; we also assessed the release of peptides from the LDL particle by FPLC. We observed time-dependent losses of apoB histidine, lysine and glycine. Long-lived reactive species, the reductant DOPA, and the oxidant hydroperoxides of valine and leucine (measured as hydroxides after reduction), were generated. Their relative abundance (mol/mol of parent amino acid) was DOPA>o- and m-tyrosine>dityrosine, valine-hydroxides, leucine hydroxides. Low molecular weight fragments were also released from the LDL in a time-dependent manner, contained hydroperoxides sensitive to GSH peroxidase, and generated radicals on reaction with iron–EDTA. The fragments contained peptides active in the quinone redox cycling procedure, comprising 0.25% of the supplied LDL amino acids. Characteristic peptides were present in each FPLC fraction containing the fragments, as judged by further HPLC fractionation. Some fragments were present in the unoxidised LDL preparations, and when these were largely removed by FPLC, copper oxidation could still generate fragments, suggesting that those present in the starting material might indicate prior oxidation. Concordantly, we found that fresh plasma LDL apoB contained 3% of total plasma protein-bound oxidised amino acids, and with the same relative abundance. We conclude that plasma proteins including apoB are subject to physiological oxidation, similar to that inflicted by copper ions; the latter may contribute to intimal LDL oxidation, which could be the source of oxidised plasma apoB.  相似文献   

5.
Lamin A, lamin B, and lamin B receptor analogues in yeast   总被引:16,自引:4,他引:12       下载免费PDF全文
Previous studies have shown that turkey erythrocyte lamin B is anchored to the nuclear envelope via a 58-kD integral membrane protein termed p58 or lamin B receptor (Worman H. J., J. Yuan, G. Blobel, and S. D. Georgatos. 1988. Proc. Natl. Acad. Sci. USA. 85:8531-8534). We now identify a p58 analogue in the yeast Saccharomyces cerevisiae. Turkey erythrocyte lamin B binds to yeast urea-extracted nuclear envelopes with high affinity, associating predominantly with a 58-kD polypeptide. This yeast polypeptide is recognized by polyclonal antibodies against turkey p58, partitions entirely with the nuclear fraction, remains membrane bound after urea extraction of the nuclear envelopes, and is structurally similar to turkey p58 by peptide mapping criteria. Using polyclonal antibodies against turkey erythrocyte lamins A and B, we also identify two yeast lamin forms. The yeast lamin B analogue has a molecular mass of 66 kD and is structurally related to erythrocyte lamin B. Moreover, the yeast lamin B analogue partitions exclusively with the nuclear envelope fraction, is quantitatively removed from the envelopes by urea extraction, and binds to turkey lamin A and vimentin. As many higher eukaryotic lamin B forms, the yeast analogue is chemically heterogeneous comprising two serologically related species with different charge characteristics. Antibodies against turkey lamin A detect a 74-kD yeast protein, slightly larger than the turkey lamin A. It is more abundant than the yeast lamin B analogue and partitions between a soluble cytoplasmic fraction and a nuclear envelope fraction. The yeast lamin A analogue can be extracted from the nuclear envelope by urea, shows structural similarity to turkey and rat lamin A, and binds to isolated turkey lamin B. These data indicate that analogues of typical nuclear lamina components (lamins A and B, as well as lamin B receptor) are present in yeast and behave as their vertebrate counterparts.  相似文献   

6.
The fluorogenic reagent 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABDF) attenuates the functional activity of the protein tyrosine phosphatase PTP1B by reacting selectively with a single cysteine residue, leaving other cysteines in the protein unmodified. This modification reduces Vmax without substantially affecting substrate binding (Km), indicative of an allosteric mode of inhibition. Consistent with this, the cysteine residue modified by ABDF, Cys 121, lies outside the catalytic site but makes interactions with residues that contact His 214, which has been shown to be important for catalysis. Cys 121 is highly conserved among phosphatases, and ABDF also inhibits TC-PTP and LAR. These findings illustrate that targeting cysteine residues outside catalytic sites may be exploited in allosterically regulating enzymes. Moreover, these results suggest a new strategy for inhibiting a promising diabetes target.  相似文献   

7.
K Vorburger  G T Kitten    E A Nigg 《The EMBO journal》1989,8(13):4007-4013
The C-terminus of nuclear lamins (CXXM) resembles a C-terminal motif (the CAAX box) of fungal mating factors and ras-related proteins. The CAAX box is subject to different types of post-translational modifications, including proteolytic processing, isoprenylation and carboxyl methylation. By peptide mapping we show that both chicken lamins A and B2 are processed proteolytically in vivo. However, whereas the entire CXXM motif is cleaved from lamin A, at most three C-terminal amino acids are removed from lamin B2. Following translation of cDNA-derived RNAs in reticulocyte lysates, lamin proteins specifically incorporate a derivative of [14C]mevalonic acid (MV), i.e. the precursor of a putative isoprenoid modification. Remarkably, no MV is incorporated into lamin B2 translated from a mutant cDNA encoding alanine instead of cysteine in the C-terminal CXXM motif. These results implicate this particular cysteine residue as the target for modification of lamin proteins by an isoprenoid MV derivative, and they indicate that isoprenylation is amenable to studies in cell-free systems. Moreover, our observations suggest that C-terminal processing of newly synthesized nuclear lamins is a multi-step process highly reminiscent of the pathway elaborated recently for ras-related proteins.  相似文献   

8.
9.
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.  相似文献   

10.
Mondal MS  Ruiz A  Bok D  Rando RR 《Biochemistry》2000,39(17):5215-5220
Lecithin retinol acyltransferase (LRAT) is an essential enzyme in vitamin A metabolism and mobilization. The membrane-bound enzyme catalyzes the transfer of an acyl group from the sn-1 position of lecithin to vitamin A to generate retinyl esters. The sequence of LRAT is novel and hence does not suggest a mechanistic class to which the enzyme belongs. However, the activity of the enzyme is exceedingly sensitive to affinity labeling and group-specific reagents directed toward thiol groups. LRAT from human retinal pigment epithelium has cysteine residues at positions 161, 168, 182, and 208. Site-specific mutagenic studies show that C182 and C208 can be converted to alanines with little affect on activity. The activities of the C161A and C168A mutants are virtually nil. Moreover, while C168S is substantially active, C161S possesses only a few percent of the activity of wild-type (WT) LRAT. Also, pH-rate profiles show that C168S has virtually the same profile as WT LRAT, while C161S shows an aberrant profile quite unlike that of WT LRAT. Therefore, LRAT is a thiol acyltransferase and C161 may be the essential nucleophilic residue critical for catalysis.  相似文献   

11.
Autoantibodies to nuclear lamin B in a patient with thrombopenia   总被引:6,自引:0,他引:6  
We report the characterization of novel nucleus specific autoantibodies in the serum of a patient with systemic lupus erythematosus. Immunofluorescent staining of cycling cells and absorption experiments localized the antigen to the nuclear envelope. Two-dimensional gel electrophoretic analysis of immunoprecipitated nuclear proteins show the antigen to be an acidic polypeptide (IP approximately 5.4) of 68 kDa molecular mass. It has been identified as lamin B, one of the three major nuclear envelope polypeptides of mammalian cells. Antibodies shown to be polyclonal immunoglobulin Gs, were directed against determinant(s) of the protein that have apparently been conserved during evolution. They do not appear to be related to other autoantibodies present in the serum (anti-DNA and anti-platelet). The nuclear specificity shown by these antibodies further demonstrates the antigenicity of proteins related to intermediate filament proteins in patients with autoimmune disorders.  相似文献   

12.
Photolysis of papain which had been inhibited with 2-bromo-2',4'-dimethoxyacetophenone regenerated papain, but also formed [deltaSer25]-papain (i.e. papain in which the active-site cysteine residue 25 was replaced by dehydroserine) via the intermediate dehydrocysteine analogue, [deltaCys25]-papain. Reduction with sodium borohydride gave [Ser25]papain. Both [Ser25]papain and [deltaSer25]-papain had binding properties similar to those of papain, but were devoid of enzymic activity. Their fluorescence properties were also investigated. Incubation of [deltaSer25]papain at pH 9.0 gave [Gly25]papain.  相似文献   

13.
C Stewart  B Burke 《Cell》1987,51(3):383-392
The nuclear lamina in adult mammalian somatic cells is composed of three major proteins, lamins A, B, and C. The expression of these proteins during the differentiation of teratocarcinomas and mouse embryogenesis is described. Embryos up to day 8 of gestation and embryonal carcinoma (EC) cells express only a single lamin species closely resembling, if not identical to, lamin B. Lamins A and/or C were detected in fertilized eggs, but disappear during the first 2-4 cleavage divisions, only reappearing in 8 day post-implantation embryos. These two lamins are absent from EC cells, but are strongly expressed in some of their derivatives. These results show that cells of the early mouse embryo do not have a functional requirement for lamins A and C and imply that the structural organization of the nucleus may change fundamentally during embryogenesis.  相似文献   

14.
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B.  相似文献   

15.
16.
17.
Cell cycle-dependent methyl esterification of lamin B   总被引:17,自引:0,他引:17  
Previous work from this laboratory has shown that approximately 24 proteins are reversibly modified by methyl esterification in a mouse lymphoma cell line. Here, we analyze several mouse tissues as well as other mouse, hamster, and human cell lines and find that many protein-methyl esters are ubiquitous while others show apparent tissue specificity. One of the modified proteins is identified by cellular localization and immunological detection as lamin B, a nuclear envelope structural protein which undergoes depolymerization during mitosis. The average stoichiometry of methylation is at least 0.5 methyl groups per lamin B molecule as determined by radioactive incorporation. By immunoblotting, however, demethylation appears to result in a gain of two negative charges suggesting the loss of two neutral methyl esters producing two carboxylic acid groups per molecule. By comparing mitotic and interphase cells, lamin B is found to be demethylated in mitosis while most other methyl esterified proteins show no appreciable cell cycle dependence. In addition to the correlation with cell cycle, it is shown that lamin B does not incorporate radioactive methyl esters in intact mouse brain tissue yet can do so if the cells are lysed. Analysis of lamin B charge by immunoblotting after isoelectric focusing indicates that this protein is fully methylated in brain suggesting that turnover of methyl groups in intact brain tissue is inhibited. We propose that methylation of lamin B may be involved in the control of disassembly and reassembly of the nuclear envelope during mitosis. If this were the case, the apparent lack of methyl group turnover in brain would be consistent with the inability of those cells to divide.  相似文献   

18.
This article reviews the research on the inner nuclear membrane protein lamin B receptor (LBR). It focuses on the biochemical and immunological evidence for an LBR; the cloning of chicken, rat and human LBR cDNAs and genomic sequences; the lamin B-, chromatin-, DNA- and NLS-binding properties of the N-terminal domain and its phosphorylation by different kinases; the sterol C-14 reductase activity of the C-terminal domain; the use of yeast two-hybrid screens and co-immunoprecipitation to identify interacting proteins; and the probing of nuclear assembly and disassembly in living cells with LBR-GFP fusion proteins. The article concludes by considering a scenario whereby LBR levels might even regulate gene expression.  相似文献   

19.
Bacillus subtilis subsp. natto produces poly-γ-glutamic acid under the control of quorum sensing. We identified ComXnatto pheromone as the quorum-sensing pheromone with an amino acid sequence of Lys-Trp-Pro-Pro-Ile-Glu and the tryptophan residue posttranslationally modified by a farnesyl group. ComXnatto pheromone is unique in the sense that the 5th tryptophan residue from the C-terminal is farnesylated.  相似文献   

20.
We have investigated the glycosylation, disulfide bonding, and subunit structure of mouse TRPM8. To do this, amino-terminal c-myc or hemagglutinin epitope-tagged proteins were incorporated and expressed in Chinese hamster ovary cells. These modifications had no obvious effects on channel function in intracellular calcium imaging assays upon application of agonists, icilin or menthol, and cold temperatures. Unmodified TRPM8 migrates with an apparent mass of 129 kDa and can be glycosylated in Chinese hamster ovary cells to give glycoproteins with apparent masses of 136 and 147 kDa. We identified two potential N-linked glycosylation sites in TRPM8 (Asn-821 and Asn-934) and mutated them to show that only the site in the putative pore region at position 934 is modified and that glycosylation of this site is not absolutely necessary for cell surface expression or responsiveness to icilin, menthol, and cool temperatures. Enzymatic cleavage of the carbohydrate chains indicated that they are complex carbohydrate. The glycosylation site is flanked in the pore by two cysteine residues that we mutated, to prove that they are involved in a conserved double cysteine motif, which is essential for channel function. Mutation of either of these cysteines abolishes function and forces the formation of a non-functional complex of the size of a homodimer. The double cysteine mutant is also non-functional. Finally, we showed in Perfluoro-octanoic acid-polyacrylamide gels that TRPM8 can form a tetramer (in addition to dimer and trimer forms), consistent with current thinking that functional TRP ion channels are tetrameric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号