首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of bryology》2013,35(1):27-32
Abstract

Our aim was to search for reasons why some peat mosses (Sphagnum), despite having wide distribution areas, consistently occur in small and distantly scattered populations. The effect of interspecific interactions was proposed as the main hypothesis. Three Sphagnum species exhibiting different distribution frequencies (S. wulfianum Girg., S. teres (Schimp.) Ångstr., and S. magellanicum Brid.) were selected, and two experiments in controlled conditions were established. In the first experiment, the peat mosses were grown in mono-species, two-species, and three-species mixtures. Only the growth of the species with the most restricted distribution (S. wulfianum) responded significantly to the presence of the other Sphagnum species. In the second experiment, shoots of S. wulfianum were watered with the exudates and extracts of the other two species. Significant effects were observed on the growth of S. wulfianum. We conclude that neighbour species can suppress the growth of some bryophyte species and possibly limit their natural distribution.  相似文献   

2.
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming‐induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.  相似文献   

3.
We studied the effects of elevated CO2 (180–200 ppmv above ambient) on growth and chemistry of three moss species (Sphagnum palustre, S. recurvum and Polytrichum commune) in a lowland peatland in the Netherlands. Thereto, we conducted both a greenhouse experiment with both Sphagnum species and a field experiment with all three species using MiniFACE (Free Air CO2 Enrichment) technology during 3 years. The greenhouse experiment showed that Sphagnum growth was stimulated by elevated CO2 in the short term, but that in the longer term (≥1 year) growth was probably inhibited by low water tables and/or down-regulation of photosynthesis. In the field experiment, we did not find significant changes in moss abundance in response to elevated CO2, although CO2 enrichment appeared to reduce S. recurvum abundance. Both Sphagnum species showed stronger responses to spatial variation in hydrology than to increased atmospheric CO2 concentrations. Polytrichum was insensitive to changes in hydrology. Apart from the confounding effects of hydrology, the relative lack of growth response of the moss species may also have been due to the relatively small increase in assimilated CO2 as achieved by the experimentally added CO2. We calculated that the added CO2 contributed at most 32% to the carbon assimilation of the mosses, while our estimates based on stable C isotope data even suggest lower contributions for Sphagnum (24–27%). Chemical analyses of the mosses showed only small elevated CO2 effects on living tissue N concentration and C/N ratio of the mosses, but the C/N ratio of Polytrichum was substantially lower than those of the Sphagnum species. Continuing expansion of Polytrichum at the expense of Sphagnum could reduce the C sink function of this lowland Sphagnum peatland, and similar ones elsewhere, as litter decomposition rates would probably be enhanced. Such a reduction in sink function would be driven mostly by increased atmospheric N deposition, water table regulation for agricultural purposes and land management to preserve the early successional stage (mowing, tree and shrub removal), since these anthropogenic factors will probably exert a greater control on competition between Polytrichum and Sphagnum than increased atmospheric CO2 concentrations.  相似文献   

4.
The reintroduction of Sphagnum fragments has been found to be a promising method for restoring mire vegetation in a cutaway peatland. Although it is known that moisture controls Sphagnum photosynthesis, information concerning the sensitivity of carbon dynamics on water‐level variation is still scarce. In a 4‐year field experiment, we studied the carbon dynamics of reintroduced Sphagnum angustifolium material in a restored (rewetted) cutaway peatland. Cutaway peatland restored by Sphagnum reintroduction showed high sensitivity to variation in water level. Water level controlled both photosynthesis and respiration. Gross photosynthesis (PG) had a unimodal response to water‐level variation with optimum level at ?12 cm. The range of water level for high PG (above 60% of the maximum light‐saturated PG) was between 22 and 1 cm below soil surface. Water level had a dual effect on total respiration. When the water level was below soil surface, peat respiration increased rapidly along the lowering water level until the respiration rate started to slow down at approximately ?30 cm. Contrary to peat respiration, the response of Sphagnum respiration to water‐level variation resembled that of photosynthesis with an optimum at ?12 cm. In optimal conditions, Sphagnum reintroduction turned the cutaway site from carbon source to a sink of 23 g C/m2 per season (mid‐May to the end of September). In dry conditions, lowered photosynthesis together with the higher peat respiration led to a net loss of 56 g C/m2. Although the water level above the optimum amplitude restricted CO2 fixation, a decrease in peat respiration led to a positive CO2 balance of 9 g C/m2.  相似文献   

5.
We determined evapotranspiration in three experiments designed to study the effects of elevated CO2 and increased N deposition on ombrotrophic bog vegetation. Two experiments used peat monoliths with intact bog vegetation in containers, with one experiment outdoors and the other in a greenhouse. A third experiment involved monocultures and mixtures of Sphagnum magellanicum and Eriophorum angustifolium in containers in the same greenhouse. To determine water use of the bog vegetation in July–August for each experiment and each year we measured water inputs and outputs from the containers. We studied the effects of elevated CO2 and N supply on evapotranspiration in relation to vascular plant biomass and exposure of the moss surface (measured as height of the moss surface relative to the container edge). Elevated CO2 reduced water use of the bog vegetation in all three experiments, but the CO2 effect on evapotranspiration interacted with vascular plant biomass and exposure of the moss surface. Evapotranspiration in the outdoor experiment was largely determined by evaporation from the Sphagnum moss surface (as affected by exposure to wind) and less so by vascular plant transpiration. Nevertheless, elevated CO2 significantly reduced evapotranspiration by 9–10% in the outdoor experiment. Vascular plants reduced evapotranspiration in the outdoor experiment, but increased water use in the greenhouse experiments. The relation between vascular plant abundance and evapotranspiration appears to depend on wind conditions; suggesting that vascular plants reduce water losses mainly by reducing wind speed at the moss surface. Sphagnum growth is very sensitive to changes in water level; low water availability can have deleterious effects. As a consequence, reduced evapotranspiration in summer, whether caused by elevated CO2 or by small increases in vascular plant cover, is expected to favour Sphagnum growth in ombrotrophic bog vegetation.  相似文献   

6.
  • Dry/wet cycling driven by water level fluctuation in wetlands may strongly influence the destiny of seeds. However, how dry/wet cycling affects spore survival and germinability in peatland bryophytes is poorly understood.
  • Six peatland bryophytes, three hummock- and three hollow-dwelling Sphagnum species, were chosen as study species. We tested the effects of dry (60% air RH)/wet (waterlogging) cycle frequency (once per 12, 8 or 4 days for low, medium or high, respectively) and ratio (3:1, 1:1 or 1:3 dry:wet time per cycle) on spore germinability, viability, dormancy percentage and protonema development.
  • Dry/wet cycling significantly reduced spore germination percentage and viability and slowed protonema development in all Sphagnum species, being more pronounced with higher dry/wet cycling frequencies. The hummock species S. capillifolium and S. fuscum had higher spore germination percentage after the continuous dry treatment, while the hollow species S. angustifolium, S. squarrosum and S. subsecundum showed the opposite response, compared to the continuously wet treatment. Except for S. squarrosum, spore viability was higher after the dry than after the wet treatment. Spore viability and dormancy percentage were higher after a dry/wet ratio of 1:3 than after ratios of 3:1 and 1:1.
  • Our study shows that both germinability and viability of bryophyte spores are reduced by dry/wet cycling (especially when frequent) in peatlands. This emphasizes the need to ensure constant water levels and low frequencies of water level fluctuation, which are relevant in connection with wetland restoration, to promote Sphagnum spore survival and establishment in peatlands after disturbances.
  相似文献   

7.
Stratospheric ozone depletion occurs over Tierra del Fuego, southern Argentina and Chile, in the austral spring and summer due to the precession of the Antarctic ‘ozone hole’ and the general erosion of the ozone layer. Plots receiving either near-ambient or reduced UV-B radiation were established using different louvered plastic film filters over Sphagnum bog and Carex fen ecosystems in October 1996. In the Sphagnum bog system, growth measurements during the late spring and summer showed no significant differences in the moss Sphagnum magellanicum, or the vascular plants (Empetrum rubrum, Nothofagus antarctica, and Tetroncium magellanicum) between near-ambient and attenuated UV-B radiation treatments. In the Carex fen system, leaf length and spike height did not differ in the two dominant species, Carex decidua and C. curta, between UV-B radiation treatments. The length of individual spikelets of C. curta under near-ambient UV-B radiation was less than under the reduced UV-B radiation treatment, but this was not evident in C. decidua. No differences in seed number, seed mass, or viability were seen in either Carex species between the UV-B treatments. Two important constituents of the microfauna that inhabit the Sphagnum bog are testate amoebae and rotifers. These both appeared to be more numerous under near-ambient UV-B radiation than under reduced UV-B radiation. The subtle responses of the Sphagnum and Carex ecosystems may become more apparent in subsequent years as the treatments are continued. Trophic-level changes, such as the differences in number of amoebae and rotifers, may be more sensitive to solar UV-B radiation than growth and productivity of the vegetation.  相似文献   

8.
The relationships between leaf and kernel carbon isotope discriminations (Δ) and several leaf structural parameters that are indicators of photosynthetic capacity were studied in durum wheat grown in the field under three water regimens. A set of 144 genotypes were cultivated in two rain-fed trials, and 125 of these were grown under supplementary irrigation before heading. Total chlorophyll and nitrogen (N) contents, the dry mass per unit leaf area (LDM, the reciprocal of specific leaf area) and carbon isotope discrimination (Δ) were measured in penultimate leaves and Δ of mature kernels was also analysed. Both LDM and N per unit area showed significant (P≤ 0.001) negative correlation (r=–0.60 and r=–0.36, respectively) with leaf Δ in the wettest trial. Little or no correlation was found for any structural parameter and leaf Δ in the rain-fed trials. In contrast, in the two rain-fed trials LDM was the parameter with the strongest positive correlation (P≤ 0.001) with kernel Δ (r= 0.47 and 0.30) and grain yield (r= 0.43 and 0.29), whereas no correlation was found in the irrigation trial. These correlations, rather than representing a causal link between the amount of photosynthetic tissue and Δ, were probably indirect associations caused by a parallel effect of water status and phenology on leaf structure, grain Δ and yield. Correlations across trials (i.e. environments) between leaf structure and either Δ and yield were very high, although also spurious. Our results suggest that LDM should be used to cull segregating population differences in leaf Δ based on the internal photosynthetic capacity only in the absence of drought. Selecting for kernel Δ and grain yield on the basis of LDM is worthwhile for rain-fed trials.  相似文献   

9.
Part of the missing sink in the global CO2 budget has been attributed to the positive effects of CO2 fertilization and N deposition on carbon sequestration in Northern Hemisphere terrestrial ecosystems. The genus Sphagnum is one of the most important groups of plant species sequestrating carbon in temperate and northern bog ecosystems, because of the low decomposability of the dead material it produces. The effects of raised CO2 and increased atmospheric N deposition on growth of Sphagnum and other plants were studied in bogs at four sites across Western Europe. Contrary to expectations, elevated CO2 did not significantly affect Sphagnum biomass growth. Increased N deposition reduced Sphagnum mass growth, because it increased the cover of vascular plants and the tall moss Polytrichum strictum. Such changes in plant species composition may decrease carbon sequestration in Sphagnum‐dominated bog ecosystems.  相似文献   

10.
  • Peatland degradation through drainage and peat extraction have detrimental environmental and societal consequences. Rewetting is an option to restore lost ecosystem functions, such as carbon storage, biodiversity and nutrient sequestration. Peat mosses (Sphagnum) are the most important peat-forming species in bogs. Most Sphagnum species occur in nutrient-poor habitats; however, high growth rates have been reported in artificial nutrient-rich conditions with optimal water supply.
  • Here, we demonstrate the differences in nutrient dynamics of 12 Sphagnum species during their establishment in a 1-year field experiment at a Sphagnum paludiculture area in Germany. The 12 species are categorized into three groups (slower-, medium- and fast-growing). Establishment of peat mosses is facilitated by constant supply of nutrient-rich, low pH, and low alkalinity surface water.
  • Our study shows that slower-growing species (S. papillosum, S. magellancium, S. fuscum, S. rubellum, S. austinii; often forming hummocks) displayed signs of nutrient imbalance. These species accumulated higher amounts of N, P, K and Ca in their capitula, and had an elevated stem N:K quotient (>3). Additionally, this group sequestered less C and K per m2 than the fast and medium-growing species (S. denticulatum, S. fallax, S. riparium, S. fimbriatum, S. squarrosum, S. palustre, S. centrale). Lower lawn thickness may have amplified negative effects of flooding in the slower-growing species.
  • We conclude that nutrient dynamics and carbon/nutrient sequestration rates are species-specific. For bog restoration, generating ecosystem services or choosing suitable donor material for Sphagnum paludiculture, it is crucial to consider their compatibility with prevailing environmental conditions.
  相似文献   

11.
  • Sphagnum biomass is a promising material that could be used as a substitute for peat in growing media and can be sustainably produced by converting existing drainage‐based peatland agriculture into wet, climate‐friendly agriculture (paludiculture). Our study focuses on yield maximization of Sphagnum as a crop.
  • We tested the effects of three water level regimes and of phosphorus or potassium fertilization on the growth of four Sphagnum species (S. papillosum, S. palustre, S. fimbriatum, S. fallax). To simulate field conditions in Central and Western Europe we carried out a glasshouse experiment under nitrogen‐saturated conditions.
  • A constant high water table (remaining at 2 cm below capitulum during growth) led to highest productivity for all tested species. Water table fluctuations between 2 and 9 cm below capitulum during growth and a water level 2 cm below capitulum at the start but falling relatively during plant growth led to significantly lower productivity. Fertilization had no effect on Sphagnum growth under conditions with high atmospheric deposition such as in NW Germany (38 kg N, 0.3 kg P, 7.6 kg K·ha?1·year?1).
  • Large‐scale maximization of Sphagnum yields requires precise water management, with water tables just below the capitula and rising with Sphagnum growth. The nutrient load in large areas of Central and Western Europe from atmospheric deposition and irrigation water is high but, with an optimal water supply, does not hamper Sphagnum growth, at least not of regional provenances of Sphagnum.
  相似文献   

12.
Carbon isotope discrimination (Δ) was measured in irrigated and droughted potato. Under irrigation, Δ in leaflets at given nodes increased (P < 0.001) between 21 and 63 d after emergence (DAE), which was attributed to increasing stomatal conductance (gs) during leaf expansion. The effect of leaf position on Δ was non-significant in mature leaves. Under drought, Δ decreased (P < 0.001) in successive leaves up the stem, reflecting changes in gs and water stress. At each node Δ remained constant or decreased, suggesting that effects of water stress were greater than changes with leaf expansion. There were significant differences in Δ between cultivars in both treatments, and in the progressive decrease in Δ up the stem under drought. Differences in Δ between cultivars were consistent with differences in stomatal control of leaf water status following water stress. Values for Δ in tubers were consistently lower than in stem and leaf, and decreased more rapidly. Differences in Δ between cultivars did not reflect dry matter production in either treatment, and differences in water use were non-significant between cultivars under drought. So, plants can achieve similar dry matter production through different growth strategies when irrigated or droughted, and Δ does not provide a simple, indirect method of selecting for dry matter production under water stress.  相似文献   

13.
To evaluate the effects of changes in water level and temperatures on performance of four Sphagnum mosses, S. magellanicum, S. rubellum, S. imbricatum and S. fuscum were grown at two water levels, −5 cm and −15 cm, and at two temperatures, 15°C and 20°C. These species differ in their position along the microtopographical gradient and in their geographical distribution. Height increment, subcapitulum bulk density, biomass production, capitulum water content and cumulative evaporation were measured. Height increment and biomass production of S. magellanicum was lower at low water table than at high water table, whereas height increment and biomass production of S. rubellum, S. imbricatum and S. fuscum were unaffected. Height increment of S. magellanicum, S. rubellum and S. imbricatum was higher at high temperature than at low temperature. Biomass production of only S. magellanicum and S. rubellum was higher at high temperature than at low temperature, corresponding with their more southern distribution. Cumulative evaporation of S. magellanicum and S. rubellum was lower at low water table and could be explained by hampered water transport towards the capitula. We conclude that changes in water table and temperature may alter the Sphagnum composition on raised bogs, which may result in changes to important ecosystem processes. Therefore, it is important that species composition and changes therein are taken into account when evaluating global change effects on raised bog ecosystems.  相似文献   

14.
适量的烟气能够促进有性繁殖体萌发,但迄今尚无辅助烟气处理探究孢子生活力快速检测方法的研究报道。该文选择毛缘泥炭藓(Sphagnum fimbriatum)、中位泥炭藓(S.magellanicum)和粗叶泥炭藓(S.squarrosum)作为材料,分别使用亚甲基蓝染色法、四唑(TTC)染色法、碘-碘化钾(I2-KI)染色法和红墨水染色法对泥炭藓孢子进行染色,并比照营养液、烟溶液+营养液培养的孢子萌发试验,对比研究泥炭地苔藓植物孢子生活力快速检测的最佳方法。结果表明:亚甲基蓝染色法的染色效果最为明显,TTC和I2-KI均未能使泥炭藓孢子着色,孢子对红墨水虽有着色反应但不清晰;与营养液培养相比,添加烟溶液使毛缘泥炭藓、中位泥炭藓和粗叶泥炭藓孢子萌发率分别提高5%、5%和18%;使用亚甲基蓝染色的孢子染色率与经烟溶液处理过的孢子萌发率最为接近。综上认为,亚甲基蓝染色法能快速检测泥炭藓孢子的生活力。  相似文献   

15.
Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species.  相似文献   

16.
Increases in solar ultraviolet‐B radiation (UV‐B; 280–320 nm) reaching the earth have been estimated to continue until 2050s in the boreal and subarctic regions with an abundant peatland cover. Peatlands are significant sinks for carbon dioxide (CO2) and sources for methane (CH4). To assess whether the future increases in UV‐B could affect the fluxes of CO2 and CH4 in peatlands via an impact on vegetation, we exposed peatland microcosms to modulated 30% supplementation of erythemally weighted UV‐B at an outdoor facility for one growing season. The experimental design included appropriate controls for UV‐A and ambient radiation. The UV‐B caused a significant reduction in gross photosynthesis, net ecosystem CO2 exchange, and CH4 emission of the peatland microcosms. These changes in the carbon gas cycling can be partly explained by UV‐B‐induced morphological changes in Eriophorum vaginatum which acts as a conduit for CH4. Leaf cross section and the percentage of CH4‐conducting aerenchymatous tissue in E. vaginatum were significantly reduced by UV‐B. Methanol‐extractable UV‐B absorbing compounds decreased under both UV‐B and UV‐A in Sphagnum angustifolium, and tended to accumulate under UV‐B in S. papillosum. Membrane permeability to magnesium (Mg) and calcium (Ca) ions was higher in UV‐B exposed S. angustifolium. Amount of chlorophyll and carotenoid pigments was increased by UV‐A in S. magellanicum. The observed changes in Sphagnum mosses did not coincide with those in carbon gas fluxes but occurred at the time of the highest UV intensity in the mid summer. Our findings indicate that increasing UV‐B may have more substantial effects on gas exchange in peatlands than previously thought.  相似文献   

17.
Sphagnum magellanicum has been viewed as being a predominantly circumpolar species in the northern hemisphere, but it occurs in the southern hemisphere and was originally described from the southern parts of Chile. It is an ecologically important species in mire ecosystems and has been extensively used as a model to study processes of growth, carbon sequestration and peat decomposition. Molecular and experimental studies have, however, revealed genetic structure within S. magellanicum, and morphological differences associated with these genetic groups. Here we describe Sphagnum divinum in Sphagnum subgenus Sphagnum (Sphagnaceae, Bryophyta) as a new species, based on molecular and morphological evidence. Sphagnum medium is reinstated as a distinct species and is epitypified. Consequently, a new species concept of S. magellanicum is presented including an epitypification. Important morphological characters to separate these three species in the field and under the microscope are presented. Ecology and distribution differ among the species; S. divinium has a wide habitat range including mire margin, forested peatlands and moist heaths, and a circumpolar distribution around the northern hemisphere. Sphagnum medium seems to be more restricted to ombrotrophic mire expanse habitats and shows an amphi-Atlantic distribution in the northern hemisphere. Sphagnum magellanicum has a very broad ecological niche in peatlands and is found in most mire habitats in Tierra del Fuego on the southern tip of South America.  相似文献   

18.
We measured net ecosystem CO2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m−2 yr−1 (wet deposition as NH4 and NO3). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m−2 yr−1 (as NH4NO3), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum, then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate‐controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO2 uptake. Our study highlights the importance of long‐term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO2 from the atmosphere.  相似文献   

19.
Drake PL  Franks PJ 《Oecologia》2003,137(3):321-329
This study investigated seasonal variation in the origin of water used by plants in a riparian tropical rainforest community and explored linkages between plant water source, plant xylem hydraulic conductivity and response to the onset of dry conditions. The study focused on five co-dominant canopy species, comprising three tree species (Doryphora aromatica, Argyrodendron trifoliolatum, Castanospora alphandii) and two climbing palms (Calamus australis and Calamus caryotoides). Stable isotope ratios of oxygen in water (18O) from soil, groundwater, stream water and plant xylem measured in the wet season and the subsequent dry season revealed water resource partitioning between species in the dry season. Measurement of stem-area-specific hydraulic conductivity (KS) in the wet season and subsequent dry season showed a significant dry-season loss of KS in three of the five species (Castanospora alphandii, Calamus australis and C. caryotoides) and a decrease in mean KS for all species. This loss of hydraulic conductivity was positively correlated with the difference between wet-season and dry-season midday leaf water potentials and with leaf carbon isotope discrimination, indicating that plants that were less susceptible to loss of conductivity had greater control over transpiration rate and were more water-use efficient.  相似文献   

20.
Stand density reductions have been proposed as a method by which old‐growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre‐1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old‐growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree‐ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water‐use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual> 250‐year‐old‐ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose‐δ13C of annual tree rings, soil water availability (estimated from pre‐dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un‐thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response. After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un‐thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood‐specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (ACi curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre‐dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un‐thinned trees in all stands, and was strongly correlated with Δ post‐thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re‐established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号