首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The conformations of two peptides produced by the combinations of a nuclear localization sequence and a sequence issued from the fusion protein gp41 of HIV 1 have been analyzed both in solution and in membranes or in membrane mimicking environments. Both are shown to be nonordered in water, α-helical when incorporated into SDS micelles where the helical domain concerns the hydrophobic part of the peptides. Interactions with lipids induce the formation of β-sheet and the lipid-peptide interactions are governed by the nature of the lipid polar headgroups. A monolayer study shows that replacement of the sequence separating the two sequences with an arginine favors the lipid-peptide interactions which may contribute to the understanding of the different, nuclear and membrane associated, cellular localizations of the peptides. Received: 10 October 1997/Revised: 15 January 1998  相似文献   

2.
We have chemically characterized a preparation of halitoxins, (1,3 alkyl-pyridinium salts) isolated from the marine sponge Callyspongia ridleyi. At concentrations of 50 and 5 μg/ml the halitoxin preparation caused irreversible membrane potential depolarization, decreased input resistance and inhibited evoked action potentials when applied to cultured dorsal root ganglion neurones. Under whole cell voltage clamp the halitoxins produced an increase in cation conductance that was attenuated by replacing sodium with N-methyl-d-glucamine. Fura-2 fluorescence ratiometric calcium imaging was used to directly measure calcium flux into neurones after exposure to halitoxins. Calcium influx, evoked by the halitoxins, persisted when the neurones were bathed in medium containing the voltage-activated calcium channel antagonists cadmium and nickel. Experiments on undifferentiated F-11 cells showed little or no calcium influx in response to depolarizing concentrations of potassium and indicated that halitoxins evoked massive calcium influx in the absence of voltage-activated calcium channels. The halitoxins also produced transient increases in intracellular calcium when F-11 cells were bathed in calcium-free medium suggesting that the toxins could release calcium from intracellular stores. The pore-forming action of the halitoxins was identified when the toxins were applied to artificial lipid bilayers composed of phosphatidylcholine and cholesterol. Halitoxins evoked channel-like activity in the lipid bilayers, with estimated unitary conductances of between 145pS and 2280pS, possibly indicating that distinct channels could be produced by the different components in the preparation of halitoxins. Received: 23 December 1999/Revised: 3 April 2000  相似文献   

3.
4.
The yeast Peptide Sensitive Channel (PSC), a cationic channel of the mitochondrial outer membrane closes with slow kinetics at potentials of either polarity. The properties of this inactivation closely resemble those of the Voltage-Dependent Anion Channel (VDAC) slow kinetics closures. Addition of trypsin to one compartment suppresses the inactivation observed when this compartment is made positive, but does not affect the inactivation observed at potentials of reverse polarity. Both sides of the channel are sensitive. The reduced form of the Mast Cell Degranulating peptide (rMCD) increases the rate of inactivation, but only when the polarity of the compartment to which it is added is positive. The effect is not reversed by washing the peptide out, but is suppressed by trypsin. The peptide can bind to both sides of the membrane. The effect of rMCD on PSC closely resembles that of the ``modulator' on VDAC. The similarities between PSC and VDAC suggest that the former might be a cationic porin of the mitochondrial outer membrane possessing a structure closely related to that of VDAC. Received: 2 February 1996/Revised: 18 October 1996  相似文献   

5.
6.
Processes such as endo- or exocytosis, membrane recycling, fertilization and enveloped viruses infection require one or more critical membrane fusion reactions. A key feature in viral and cellular fusion phenomena is the involvement of specific fusion proteins. Among the few well-characterized fusion proteins are viral spike glycoproteins responsible for penetration of enveloped viruses into their host cells, and sperm proteins involved in sperm-egg fusion. In their sequences, these proteins possess a ``fusion peptide,' a short segment (up to 20 amino acids) of relatively hydrophobic residues, commonly found in a membrane-anchored polypeptide chain. To simulate protein-mediated fusion, many studies on peptide-induced membrane fusion have been conducted on model membranes such as liposomes and have employed synthetic peptides corresponding to the putative fusion sequences of viral proteins, or de novo synthesized peptides. Here, the application of peptides as a model system to understand the molecular details of membrane fusion will be discussed in detail. Data obtained from these studies will be correlated to biological studies, in particular those that involve viral and sperm-egg systems. Structure-function relationships will be revealed, particularly in the context of protein-induced membrane perturbations and bilayer-to-nonbilayer transition underlying the mechanism of fusion. We will also focus on the involvement of lipid composition of membranes as a potential regulating factor of the topological fusion site in biological systems. Received: 3 August 1998/Revised: 15 October 1998  相似文献   

7.
Retrovirus-like sequences and their solitary (solo) long terminal repeats (LTRs) are common repetitive elements in eukaryotic genomes. We reported previously that the tandemly arrayed genes encoding U2 snRNA (the RNU2 locus) in humans and apes contain a solo LTR (U2-LTR) which was presumably generated by homologous recombination between the two LTRs of an ancestral provirus that is retained in the orthologous baboon RNU2 locus. We have now sequenced the orthologous U2-LTRs in human, chimpanzee, gorilla, orangutan, and baboon and examined numerous homologs of the U2-LTR that are dispersed throughout the human genome. Although these U2-LTR homologs have been collectively referred to as LTR13 in the literature, they do not display sequence similarity to any known retroviral LTRs; however, the structure of LTR13 closely resembles that of other retroviral LTRs with a putative promoter, polyadenylation signal, and a tandemly repeated 53-bp enhancer-like element. Genomic blotting indicates that LTR13 is primate-specific; based on sequence analysis, we estimate there are about 2,500 LTR13 elements in the human genome. Comparison of the primate U2-LTR sequences suggests that the homologous recombination event that gave rise to the solo U2-LTR occurred soon after insertion of the ancestral provirus into the ancestral U2 tandem array. Phylogenetic analysis of the LTR13 family confirms that it is diverse, but the orthologous U2-LTRs form a coherent group in which chimpanzee is closest to the humans; orangutan is a clear outgroup of human, chimpanzee, and gorilla; and baboon is a distant relative of human, chimpanzee, gorilla, and orangutan. We compare the LTR13 family with other known LTRs and consider whether these LTRs might play a role in concerted evolution of the primate RNU2 locus. Received: 29 September 1997 / Accepted: 16 January 1998  相似文献   

8.
9.
Escherichia coli hemolysin is known to cause hemolysis of red blood cells by forming hydrophilic pores in their cell membrane. Hemolysin-induced pores have been directly visualized in model systems such as planar lipid membranes and unilamellar vesicles. However this hemolysin, like all the members of a related family of toxins called Repeat Toxins, is a potent leukotoxin. To investigate whether the formation of channels is involved also in its leukotoxic activity, we used patch-clamped human macrophages as targets. Indeed, when exposed to the hemolysin, these cells developed additional pores into their membrane. Such exogenous pores had properties very different from the endogenous channels already present in the cell membrane (primarily K+ channels), but very similar to the pores formed by the toxin in purely lipidic model membranes. Observed properties were: large single channel conductance, cation over anion selectivity but weak discrimination among different cations, quasilinear current-voltage characteristic and the existence of a flickering pre-open state of small conductance. The selectivity properties of the toxin channels appearing in phospholipid vesicles were also investigated, using a specially adapted polarization/depolarization assay, and were found to be completely consistent with that of the current fluctuations observed in excised macrophage patches. Received: 14 August 1995/Revised: 2 October 1995  相似文献   

10.
Evolutionary geneticists have increasingly used sequence variation in mitochondrial DNA (mtDNA) as a source of historical information. However, conclusions based on these data remain tentative because a sufficiently clear understanding of the evolutionary dynamics of mtDNA has yet to be developed. In this paper we present the results of computer simulations designed to illustrate the effects of social structure, geographical structure, and population size on the rate of nucleotide substitution and lineage sorting of mtDNA. The model is based in part on the social structure of macaque monkeys. Simulated populations of females were divided into 25 social groups; the animals in each were distributed in a hierarchy of four dominance rank categories. The probabilities for offspring survivorship were varied among dominance ranks to reflect the fitness consequences of social structure. Population size was varied across runs from 100 to 300 females. The pattern of female migration was also varied to mimic either the island model or the stepping-stone model. All these variables are shown to affect the lineage sorting period (LSP), and certain combinations of parameter values can cause the retention of mtDNA polymorphisms for a very long time. In addition, the simulations exhibited a negative relationship between the LSP and substitution rate over a modest and realistic range of LSP values. An important implication of these results is that estimates of time since isolation based on the assumption of a constant molecular clock may be biased and unreliable.  相似文献   

11.
Alpha-helical coiled coils are proving to be almost ideal systems for the modelling of peptide and protein self-association processes. Stable oligomeric systems, in which the stoichiometry is well defined, can be produced by the careful selection of the appropriate amino acid sequence, although the principles behind this are still not fully understood. Here we report on a 35 residue peptide, FZ, synthesized by the solid phase method, which was originally designed to form a dimer, but which, in fact, associates to the trimeric state. A detailed characterization of the associative properties of the peptide has been performed by circular dichroism spectroscopy and, in particular, by sedimentation equilibrium in the analytical ultracentrifuge. The presence of the trimeric state, which is stable even at low peptide concentrations, has been confirmed by various, independent methods of analysis for molar mass. The effects of both temperature and of guanidinium chloride on the peptide have been investigated and both found to be peptide-concentration dependent. The unfolding induced by the denaturant cannot be adequately described by a simple, two state monomer-trimer equilibrium. Received: 29 November 1996 / Accepted: 2 December 1996  相似文献   

12.
The peptide bond formation of alanine (ala), ala + glycine (gly), ala + diglycine (gly2), and ala + gly cyclic anhydride (cyc-gly2) in drying/wetting cycles at 80°C was studied. Silica, alumina, and representative smectites—montmorillonite and hectorite—were used as catalysts, and the dependence of reaction yields on the available amount of water in the reaction systems was evaluated. Silica and alumina catalyze the formation of oligopeptide mainly in temperature fluctuation experiments, whereas higher amounts of water in the reaction system support clay-catalyzed reactions. Silica and alumina are much more efficient for amino acid dimerization than clays. Whereas only 0.1% of ala oligomerized on hectorite and no reaction proceeded on montmorillonite, about 0.9 and 3.8% alanine converted into its dimer and cyclic anhydride on silica and alumina, respectively. Clay minerals, on the other hand, seem to more efficiently catalyze peptide chain elongation than amino acid dimerization. The reaction yields of ala-gly-gly and gly-gly-ala from ala + gly2 and ala + cyc-gly2 reached about 0.3% on montmorillonite and 1.0% on hectorite. The possible mechanisms of these reactions and the relevance of the results for prebiotic chemistry are discussed. Received: 15 December 1996 / Accepted: 1 May 1997  相似文献   

13.
Endosymbiotic bacteria live in animal cells and are transmitted vertically at the time of the host's reproduction. In view of their small and asexual populations with infrequent chances of recombination, these endocellular bacteria are expected to accumulate mildly deleterious mutations. Previous studies showed that the DNA sequences of these bacteria evolved faster than those of free-living bacteria. In this study, we compared all the ORFs of Buchnera, an endocellular bacterial symbiont of aphids, with those of 34 other prokaryotic organisms and estimated the effect of the accelerated evolution of Buchnera on the functions of its proteins. It was revealed that Buchnera proteins contain many mutations at the sites where sequences are conserved in their orthologues in many other organisms. In addition, amino acid replacements at the conserved sites are mostly changes to physicochemically different amino acids. These results suggest that functions and conformations of Buchnera proteins have been seriously impaired or strongly modified. Indeed, extensive loss of functional motifs was observed in some Buchnera proteins. In many Buchnera proteins mutations were not detected evenly throughout each molecule but tended to accumulate in some functional units, possibly leading to loss of specific functions. As Buchnera has an unusual and limited gene repertory, it is conceivable that the manner of interactions among its proteins has been changed, and thus, functional constraints over their amino acid residues have also been changed during evolution. This may account for the loss of some functional units only in the Buchnera proteins. We obtained evidence that amino acid replacements in Buchnera were not always deleterious, but neutral or, in some cases, even positively selected. Received: 14 December 2000 / Accepted: 12 March 2001  相似文献   

14.
After activation, Bacillus thuringiensis (Bt) insecticidal toxin forms pores in larval midgut epithelial cell membranes, leading to host death. Although the crystal structure of the soluble form of Cry1Aa has been determined, the conformation of the pores and the mechanism of toxin interaction with and insertion into membranes are still not clear. Here we show that Cry1Aa spontaneously inserts into lipid mono- and bilayer membranes of appropriate compositions. Fourier Transform InfraRed spectroscopy (FTIR) indicates that insertion is accompanied by conformational changes characterized mainly by an unfolding of the β-sheet domains. Moreover, Atomic Force Microscopy (AFM) imaging strongly suggests that the pores are composed of four subunits surrounding a 1.5 nm diameter central depression. Received: 14 July 2000/Revised: 28 December 2000  相似文献   

15.
The primary and secondary structure of the small-subunit ribosomal RNA (ssrRNA) gene from the naked, marine amoeba, Vannella anglica (subclass Gymnamoebia), was determined. The ssrRNA is 1962 nucleotides in length, with a low G+C content of 37.1%. The ssrRNA is composed of several uncommon secondary structure features including helix E8-1, which may be a useful target for rRNA probes for the direct identification of isolates in mixed culture. Phylogenetic analysis of sequence data showed that V. anglica branched prior to the rapid diversification of the eukaryotes. It did not associate with the other naked, lobose amoebae represented by Acanthamoeba and Hartmannella, indicating that Vannella represents a separate amoeboid lineage and the subclass Gymnamoebia is polyphyletic. Received: 9 July 1998 / Accepted: 16 November 1998  相似文献   

16.
Precursor structures of various members of the neuropeptide family adipokinetic hormone/red pigment concentrating hormone (AKH/RPCH) of mandibular arthropods and the APGWamide family of mollusks were compared. Amino acid alignments showed a common overall architecture (signal peptide, active peptide, related peptide), with a similar α helix–random coil secondary structure. DNA sequence alignments revealed close similarities between the genes encoding for the peptides of the two families. The APGWamide genes are larger than the AKH/RPCH genes. The sequence environment occupied by introns is similar in AKH/RPCH and APGWamide genes. Such similarities suggest that these peptide families might have been originated by gene rearrangements from a common ancestor having either an AKH/RPCH/APGWamide-like structure or both an AKH/RPCH-like and an APGWamide-like structures. In the former model, DNA fragments could have been gained when the ancestor evolved to mollusks and it could have lost nucleotides when the progression to mandibular arthropods took place. In the second model, AKH/RPCH-like structures could have been fused during evolution toward mandibular arthropods, whereas in mollusks they could have been lost with the possible amplification of the APGWamide-like structure. Loss of domains in exon 1 may have originated the signal peptide and the first codon of the active RPCH. In exon 2, loss of domains possibly determined the junctions of codons 2 to 5 with the loss of a APGWamide copy; exon 3 underwent fewer variations. The similarity of the mollusk APGWamide precursors is closer to that of the RPCH family than the insect AKH family, indicating an earlier evolutionary departure.  相似文献   

17.
18.
Phylogenetic relationships among reptiles were examined using previously published and newly determined hemoglobin sequences. Trees reconstructed from these sequences using maximum-parsimony, neighbor-joining, and maximum-likelihood algorithms were compared with a phylogenetic tree of Amniota, which was assembled on the basis of published morphological data. All analyses differentiated α chains into αA and αD types, which are present in all reptiles except crocodiles, where only αA chains are expressed. The occurrence of the αD chain in squamates (lizards and snakes only in this study) appears to be a general characteristic of these species. Lizards and snakes also express two types of β chains (βI and βII), while only one type of β chain is present in birds and crocodiles. Reconstructed hemoglobin trees for both α and β sequences did not yield the monophyletic Archosauria (i.e., crocodilians + birds) and Lepidosauria (i.e., Sphenodon+ squamates) groups defined by the morphology tree. This discrepancy, as well as some other poorly resolved nodes, might be due to substantial heterogeneity in evolutionary rates among single hemoglobin lineages. Estimation of branch lengths based on uncorrected amino acid substitutions and on distances corrected for multiple substitutions (PAM distances) revealed that relative rates for squamate αA and αD chains and crocodilian β chains are at least twice as high as those of the rest of the chains considered. In contrast to these rate inequalities between reptilian orders, little variation was found within squamates, which allowed determination of absolute evolutionary rates for this subset of hemoglobins. Rate estimates for hemoglobins of lizards and snakes yielded 1.7 (αA) and 3.3 (β) million years/PAM when calibrated with published divergence time vs. PAM distance correlates for several speciation events within snakes and for the squamate ↔ sphenodontid split. This suggests that hemoglobin chains of squamate reptiles evolved ∼3.5 (αA) or ∼1.7 times (β) faster than their mammalian equivalents. These data also were used to obtain a first estimate of some intrasquamate divergence times. Received: 15 September 1997 / Accepted: 4 February 1998  相似文献   

19.
20.
Here we describe a new short retroposon family of rodents. Like the primate Alu element consisting of two similar monomers, it is dimeric, but the left and right monomers are different and descend from B1 and ID short retroposons, respectively. Such elements (B1-dID) were found in the genomes of Gliridae, Sciuridae, Castoridae, Caviidae, and Hystricidae. Nucleotide sequences of this retroposon can be assigned to several structural variants. Phylogenetic analysis of B1-dID and related sequences suggests a possible scenario of B1-dID evolution in the context of rodent evolution. Received: 30 August 1999 / Accepted: 20 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号