首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FREE AMINO ACIDS AND RELATED COMPOUNDS IN BIOPSIES OF HUMAN BRAIN   总被引:7,自引:2,他引:5  
Abstract— Contents (μmol/g wet wt.) of 35 free amino acids and related compounds were measured in biopsies of human brain from ten patients. Brain specimens were frozen in liquid nitrogen within 10 sec of their removal at neurosurgery; thus, the values found should approximate those which occur in living brain.
Levels in free pools of biopsied cerebral cortex of most of the amino acids that are constituents of proteins were only 20-50 per cent of those found in autopsied cortex. The content of cystine and ethanolamine was much lower in biopsied than in autopsied cortex. Concentrations of GABA in biopsied cortex were only 20 per cent as high as those found in autopsied cortex, and levels of γ-aminobutyryl dipeptides were also significantly lower in biopsied cortex. Amounts of cystathionine in biopsied cortex varied markedly, but averaged much higher than in autopsied cortex; a single biopsy specimen of cerebellar grey matter had a cystathionine content 36-fold greater than the mean found in autopsied cerebellum.
Appreciable variability in contents among cortical biopsies was found for glycerophosphoethanolamine, phosphoethanolamine, ethanolamine, taurine, aspartic acid, glutamic acid, glutamine, and GABA, as well as for cystathionine. Whether this variability occurred between different subjects, or between different cortical areas, was not clear, although the former possibility was suggested by findings in multiple cortical biopsies from one patient.  相似文献   

2.
Homocarnosine (HCarn) content varied over a 6-fold range in different regions of autopsied human brain, being highest in the dentate nucleus and the inferior olive, and lowest in the caudate nucleus and mesolimbic system. HCarn content was similar in biopsied and autopsied frontal cortex. Very little if any carnosine (Carn) was present in human brain, except for the olfactory bulb, where Carn may have comprised 20% of the imidazole dipeptides present. Only HCarn was present in human CSF. HCarn-Carn synthetase enzyme activity in biopsy specimens of human frontal and temporal cortex was approx 10 times greater than has been reported for rat cerebral cortex. The enzyme synthesized Carn 3–5 times as rapidly as HCarn, when β-alanine (β-Ala) or GABA substrate concentrations were 10 MM. The synthetase was found to have an apparent Km of 1.8 mM for β-Ala, and 8.8 mM for GABA. HCarn-Carn synthetase activity decreases rapidly after brain death, and was not detectable in autopsied brain specimens frozen more than 6 h after patients’deaths. Homocarnosinase activity was determined in brain, using L-[γaminobutyryl-1-14C]HCarn as substrate, and measuring radioactive GABA produced by hydrolysis of HCarn at pH 7.2 in the presence of Co2+ ions. Homocarnosinase activity was similar in biopsied and autopsied human cerebral cortex, and appeared to be stable for at least 10 h after death in unfrozen brain. Differences in the regional distribution of HCarn-Carn synthetase and homocarnosinase activities, as well as regional differences in GABA content in human brain, do not readily account for regional differences in HCarn content, nor do they suggest a physiological role for HCarn.  相似文献   

3.
Abstract: The distribution of activity of glutamate decarboxylase (GAD), the enzyme synthesising γ-aminobutyric acid (GABA), was measured in the cat brain by means of microdissection of the structures from frozen slices and a radioisotopic assay for the enzyme. About 20 cerebral regions were chosen for study because of their role in sensorimotor integration. GAD presented an uneven distribution among these areas. Highest activities were found in the basal ganglia, particularly in the substantia nigra and in the globus pallidus, and to a lesser extent in the cerebellum. Relatively low levels of the enzyme were found in the thalamus and in the cerebral motor cortex. Special detailed studies were made in the caudate nucleus, the substantia nigra, and in the red nucleus for the purpose of defining the intranuclear distribution of their GABAergic innervation. There were only small differences in the rostro-caudal distribution of the enzyme in the head of the caudate nucleus but GAD activity was higher in the ventral than in the dorsal part of the structure. In the substantia nigra, GAD activity was high in both the medial and intermediate thirds of the structure. The GAD activity decreased from the caudal to the rostral part of the nucleus. GAD levels were lower in the caudal part of the red nucleus than in the rostral part. These results indicate that GABA would be present as a putative neurotransmitter in many motor nuclei of the cat brain. In view of the general inhibitory action of this amino acid, this could be related to the presence of inhibitory responses widely distributed in these nuclei as identified by mean of electrophysiological studies. The origin of these GABAergic innervations in many cases remains to be determined.  相似文献   

4.
Brain tissue was obtained at autopsy from nine cirrhotic patients dying in hepatic coma and from an equal number of controls, free from neurological, psychiatric, or hepatic diseases, matched for age and time interval from death to freezing of dissected brain samples. Glutamine, glutamate, aspartate, and gamma-aminobutyric acid (GABA) levels were measured in homogenates of cerebral cortex (prefrontal and frontal), caudate nuclei, hypothalamus, cerebellum (cortex and vermis), and medulla oblongata as their o-phthalaldehyde derivatives by HPLC using fluorescence detection. Glutamine concentrations were found to be elevated two- to fourfold in all brain structures, the largest increases being observed in prefrontal cortex and medulla oblongata. Glutamate levels were selectively decreased in prefrontal cortex (by 20%), caudate nuclei (by 27%), and cerebellar vermis (by 17%) from cirrhotic patients. On the other hand, GABA content of autopsied brain tissue from these patients was found to be within normal limits in all brain structures. It is suggested that such region-selective reductions of glutamate may reflect loss of the amino acid from the releasable (neurotransmitter) pool. These findings may be of significance in the pathogenesis of hepatic encephalopathy resulting from chronic liver disease.  相似文献   

5.
The effects of taurine supplementation on GABA-related amino acid homeostasis in developing nervous tissues of suckling rats were studied. In the first two weeks of postnatal growth, cerebral cortex and cerebellum appear more accessible to taurine supplementation in comparison to retina; in addition, different changes in excitatory/inhibitory amino acids were observed. After the 5th day of life, in the retina and cerebellum of taurine-supplemented pups a decrease in GABA levels was found; in contrast, in cerebral cortex GABA content significantly increased throughout 20 days of postnatal growth. In all nervous tissues studied (except for cerebellum) glutamine concentration increased at the 5th day; then in cerebellum and in retina, but not in cerebral cortex, a significant decrease until the 20th day occurred. Furthermore, in cerebellum and retina taurine supplementation decreased glutamate levels, in comparison to controls, at the 10th and until the 20th day of postnatal life, respectively, whereas in cerebral cortex an increase in glutamate level was observed only at the 5th day. In conclusion, taurine supplementation, in excess to the usual amount from the mother's milk, affected the glutamate compartments in various cell types. The changes in GABA-related amino acid concentrations in cerebral cortex, cerebellum, and retina may depend on the different pattern of the metabolic processes at different maturative stages.  相似文献   

6.
No agent is yet available to reverse respiratory paralysis produced by CNS depressants, such as general anesthetics. In this study naloxone reversed respiratory paralysis induced by thiopental in rats. 25 mg/kg, i.v. thiopental produced anesthesia without altering respiratory rate, increased GABA, decreased glutamate, and had no effect on aspartate or glycine levels compared to controls in rat cortex and brain stem. Pretreatment of rats with thiosemicarbazide for 30 minutes abolished the anesthetic action as well as the respiratory depressant action of thiopental. 50 mg/kg, i.v. thiopental produced respiratory arrest with further increase in GABA and decrease in glutamate again in cortex and brain stem without affecting any of the amino acids studied in four regions of rat brain. Naloxone (2.5 mg/kg, i.v.) reversed respiratory paralysis, glutamate and GABA levels to control values in brain stem and cortex with no changes in caudate or cerebellum. These data suggest naloxone reverses respiratory paralysis produced by thiopental and involves GABA in its action.  相似文献   

7.
Changes in free amino acids were examined in the central nervous system of mice treated with caffeine for three weeks. Caffeine was administered in the drinking water, and at the end of three weeks the level of caffeine in the cerebral cortex was 113±19 g/g. When amino acid levels in cerebral hemispheres, midbrain, pons and medulla, and cerebellum were measured a significant increase in glutamine levels was found in all four regions. Glycine, alanine, serine, threonine, and GABA were significantly reduced in some regions. Caffeine appears to alter some of the metabolic or transport processes regulating amino acid pools in the brain. The decrease of GABA found in pons and medulla may contribute to the observed increase in reflex excitability after caffeine.Special issue dedicated to Dr. Elling Kvamme  相似文献   

8.
Abstract— The effects of 121 m m -K+, 10 m m -glutamate, 5 m m -GABA, 1 m m -glycine, 0.1 m m -NE, and 1–10 μ m ACh on cyclic GMP levels in tissue slices prepared from cerebral cortex and cerebellum of mouse, rabbit, guinea-pig, cat, and rat were studied. Basal levels of cyclic GMP in the cerebella of mice, guinea-pigs and cats were 4–15 and 70 pmol/mg prot in rat, whereas in the cerebral cortex of the same animals, levels were only 0.6–2 pmol/mg prot. In contrast, basal levels of the cyclic nucleotide were 1–2 pmol/mg prot in both of these regions in rabbit brain. Only 121 m m -K+ was capable of increasing cyclic GMP levels in all the tissues studied. Elevations ranged from 30% in rat cerebral cortex to 2800% in mouse cerebellum. Glutamate produced a 30–1000% rise of cyclic GMP levels in all tissues except rabbit cerebellum. NE elevated levels of cyclic nucleotide 2- to 3-fold in slices of cerebellum from all species studied but had no effect in cerebral cortex. GABA and glycine had no effect in any tissue except mouse cerebellum. ACh had no consistent effect on levels of cyclic GMP in any brain region investigated. These results suggest that mechanisms regulating cyclic GMP levels in mammalian CNS vary among brain regions and among animal species.  相似文献   

9.
100 mg of taurine per kg body weight had been administered intraperitoneally and 30 min after the administration the animals were sacrificed. Glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glutaminase, glutamine synthetase, glutamate decarboxylase and GABA aminotransferase along with the content of glutamate and GABA in cerebral cortex, cerebellum and brain stem were studied and compared with the same obtained in the rats treated with normal saline in place of taurine. The results indicated a significant decrease in the activity of glutamate dehydrogenase in cerebral cortex and cerebellum and a significant increase in brain stem. Glutaminase and glutamine synthetase were found to increase significantly both in cerebral cortex and cerebellum. The activities of glutamate decarboxylase was found to increase in all the three regions along with a significant decrease in GABA aminotransferase while the content of glutamate showed a decrease in all the three brain regions, the content of GABA was observed to increase significantly. The above effects of taurine on the metabolism of glutamate and GABA are discussed in relation to the functional role of GABA and glutamate. The results indicate that taurine administration would result in a state of inhibition in brain.  相似文献   

10.
Abstract— Na+-dependent ‘binding’ of β-alanine and GABA was examined with synaptosomal-mitochondrial fractions of rat brain incubated for 10 min at 0°C. GABA was bound to a much greater extent than β-alanine to particles of cerebral cortex, whole cerebellum and brain stem. For cerebral cortex, the binding capacity (Bmax) for GABA was about 18 limes greater than that for β-alanine. and the affinity of the particles for GABA was about 2′ times greater than for β-alanine. The order of potency of GABA binding to brain regions was cerebral cortex > cerebellum > brain stem, whereas that for β-alanine was the reverse. If the binding of β-alanine is taken to indicate the glial component of the Na+-dependent binding process for GABA, then most of the GABA was bound to neuronal elements under the conditions employed.  相似文献   

11.
The levels of the neurotransmitter amino acids glutamate, aspartate, and GABA were determined in different brain regions during ischemia and post-ischemic recirculation periods using the unilateral carotid artery occlusion model of stroke in gerbils. The levels of glutamate, aspartate and GABA in ischemic hemisphere were increased significantly by 10 min of ischemia and later declined with time. Reperfusion for 30 min following 10 min. of ischemia further enhanced the levels of glutamate and aspartate. Increase in GABA levels were found during early periods of reperfusion. Regional variations in the changes of amino acids' levels were noticed following ischemia. Hippocampus showed the highest increase in glutamate levels followed by striatum and cerebral cortex. Aspartate levels in striatum and hippocampus increased during 10 min ischemia (46% and 30%) and recirculation (70% and 79%), whereas in cerebral cortex the levels were doubled only during recirculation. Ischemia induced elevations of GABA levels were observed in cerebral cortex (68%) and in hippocampus (30%), and the levels were normalized during recirculation. No changes in GABA levels were found in striatum. It is suggested that the large increase in the levels of excitatory neurotransmitter amino acids in brain regions specially in hippocampus during ischemia and recirculation may be one of the causal factors for ischemic brain damage.  相似文献   

12.
The hypnotic drug quazepam and its active metabolite 2-oxo-quazepam (2-oxo-quaz) are two benzodiazepines (BZ) containing a trifluoroethyl moiety on the ring nitrogen at position 1, characterized by their preferential affinity for Type I BZ recognition sites. In the present study we characterized the binding of 3H-2-oxo-quaz in discrete areas of the human brain. Saturation analysis demonstrated specific and saturable binding of 3H-2-oxo-quaz to membrane preparations from human cerebellum. Hill plot analysis of displacement curves of 3H-flunitrazepam (3H-FNT) binding by 2-oxo-quaz yielded Hill coefficients of approximately 1 in the cerebellum and significantly less than 1 in the cerebral cortex, hippocampus, caudate nucleus, thalamus and pons. Self and cross displacement curves for 3H-FNT and 3H-2-oxo-quaz binding in these brain areas indicated that 2-oxo-quaz binds with different affinities to two populations of binding sites. High affinity binding sites were more abundant in the cerebellum (95% of total sites), cerebral cortex, hippocampus and thalamus, whereas low affinity sites were predominant in the caudate nucleus and pons. Competition studies of 3H-2-oxo-quaz (2 nM) and 3H-FNT (0.5 nM) using unlabelled ligands indicated that compounds which preferentially bind to Type I sites are more potent at displacing 3H-2-oxo-quaz than 3H-FNT from cerebral cortex membrane preparations. The results suggest that 3H-2-oxo-quaz may be used for selectively studying Type I BZ recognition sites in the human brain.  相似文献   

13.
We found that chronic lithium diet affects the sensitivity of neuroleptic receptors and the content of amino acids in the brain, and that the changes in adult animals differ from those in young rats. Pregnant rats were kept on lithium diet (pellets with 0.21% Li2CO3 and 0.21% NaCl) during the gestation period and the offspring were kept on lithium for six weeks after delivery. Control rats were kept on normal diet under identical conditions. In corpus striatum and cerebral cortex of lithium-treated young rats a reduction in apparent dissociation constant and no change in (3H)spiperone total binding sites were found, suggesting a sensitization of the neuroleptic receptor; this result was unlike that obtained with adult lithium-treated rats, where the total number of binding sites was decreased. The lithium content of brain was very high (2.32 meq/kg of wet weight), whereas in the serum only 0.75 meq/l was recorded. K+ and Na+ levels increased by 20% and 9% respectively in the brain and remained at normal levels in the serum. Analysis of free amino acids in the cerebral cortex, midbrain, and cerebellum showed increases in GABA and glycine levels in all three regions, a significant increase in taurine in midbrain, and an increase in lysine in cerebral cortex and cerebellum. The results indicate that the effect of chronic dietary lithium given during pregnancy on the neuroleptic receptor in young rats is different from that in adult animals. It produces an increase in the number of the neuroleptic receptor sites instead of the decline in the number of binding sites found in adult rats. It remains to be established whether this effect is related more to the age of the animal tested or to the stage of development of the CNS at which the lithium was administered.  相似文献   

14.
本实验采用放射性配基受体结合分析法,测定了猫脑外伤时大脑皮质和海马N─甲基─D─天冬氨酸受体(NMDAR)的变化。并用氨基酸自动分析仪观察了猫大脑皮质兴奋性氨基酸含量变化。结果表明,伤后2和6h两侧大脑皮质和海马NMDAR的最大结合容量明显降低,伤后2h以海马变化最大,并以伤后6h伤侧大脑皮质中降低最为显著;而大脑皮质兴奋性氨基酸含量伤后5min即显著升高,然后呈下降趋势,且以伤侧大脑皮质变化为大。提示:脑外伤后NMDAR的下调与兴奋性氨基酸的大量释放有关,可能在兴奋毒性脑损伤中起重要作用。  相似文献   

15.
Abstract— Glycine was a substrate for d -amino acid oxidase purified from extracts of cat spinal cord and sheep cerebellum. d -Aspartate and N -methyl- d -aspartate were oxidized at a rate similar to that of glycine by the purified sheep cerebellum extract; d -α-alanine and d -serine were oxidized appreciably faster than glycine, while GABA and d -glutamate were not oxidized at a measurable rate. p -Mercuribenzoate and kojate inhibited the oxidation of glycine by the purified sheep cerebellum extract.
d -Amino acid oxidase activity was higher in the grey than in the white matter of cat spinal cord, while the reverse was true for the cerebral cortex; the activity in the cord and cerebral cortex was much lower than that in the cerebellum.  相似文献   

16.
Abstract— The combination of l -DOPA and pargyline caused a decrease in level of aspartate and an increase in that of glutamine in vivo in cerebral cortex, cerebellum, brain stem, hypothalamus, neostriatum and cervical cord of rat. There was also a decreased incorporation of radioactivity from [1-14C]acetate into amino acids in vivo , most notably in cerebellum and brain stem. The labelling of glutamine was especially affected. In addition, cortical slices were prepared from guinea pigs which had been pretreated with pargyline. These slices were incubated with and without 1 m m l -DOPA in media containing [1-14C]acetate. Pargyline alone caused a stimulation of the labelling of glutamate and aspartate but not glutamine and GABA; the levels of aspartate and GABA were greater than in control slices. The addition of l -DOPA to slices from pargylinized animals caused a severe decrease in glutamine labelling but not in that of glutamate or aspartate; the level of glutamine was increased while that of glutamate was decreased. The results are discussed in terms of the known biochemical and morphological compartmentation of amino acids in brain. It is suggested that catecholamines, in the process of functioning as transmitters, may also function as metabolic regulators of other transmitters, e.g. amino acids, as well as of the energy required for balanced neuronal function.  相似文献   

17.
Effects of Lead In Vivo and In Vitro on GABAergic Neurochemistry   总被引:2,自引:1,他引:1  
Abstract: Alterations in aspects of neurotransmission utilizing -γ-aminobutyric acid (GABA) are associated with in vivo exposure of rats to lead at doses that do not produce convulsions, but sensitize animals to convulsant agents. These effects are observed regionally and include: decreased GABA levels in cerebellum; increased activity of glutamate decarboxylase (GAD) in caudate; and decreased GABA release (both resting and K+-stimulated) in cortex, caudate, cerebellum and substantia nigra. Sodium-dependent uptake of GABA by synaptosomes of cerebellum, substantia nigra and caudate was also affected: in these regions, affinity (Km) was increased and maximal velocity (Vmax) was reduced. Sodium-independent binding of GABA to synaptic membranes was increased in cerebellum, but was observed only when tissue was Tritonized and prepared without freezing and washing. No effects on GAD or on GABA uptake, release, or binding were observed when lead was added to brain tissue in vitro in concentrations as high as 100 μM. The results suggest that lead may produce chronic inhibition of presynaptic GABAergic function, notably in the cerebellum, which is associated with supersensitivity of postsynaptic GABA receptors. Failure of lead to affect GABAergic function in vitro may indicate that these effects are secondary to another neurotoxic action of lead in the CNS or are consequent to a nonneuronal metabolic action of lead.  相似文献   

18.
Abstract— Aminooxyacetic acid (AOAA) administration produced an increase in γ-aminobutyric acid (GABA) levels in regions of cerebral cortex, subcortex and cerebellum. In some cortical areas studied, the maximal effect was observed with 25 mg/kg AOAA; in other regions GABA levels were increased further with 50 and 75 mg/kg AOAA. Pretreatment with 25 mg/kg AOAA effectively inhibited GABA:2-oxoglutarate aminotransferase (GABA-T) and partially inhibited glutamic acid decarboxylase (GAD) activity in regions of cerebral cortex. However, this dose did not affect GAD activity in substantia nigra while GABA-T in the nigra and in the cerebellum was only partially inhibited. In both cortical and subcortical areas, the increase in GABA produced by 25 mg/kg of AOAA was linear. In contrast, l -glutamic acid-hydrazide (GAH) had no effect in the pyriform and cingulate cortex for the first 60 min after injection, and produced a biphasic GABA increase in caudate and substantia nigra over a 4 h period. Results suggest that GAH and AOAA affect regional GABA metabolism differentially and that there are several problems associated with estimating absolute GABA synthesis rates by measuring the rate or GABA accumulation after inhibition of GABA catabolism with these agents. This approach, however, may provide an easily obtainable indication of whether drugs or other manipulations are altering GABA synthesis in a given region.  相似文献   

19.
Postmortem Changes of Amino Compounds in Human and Rat Brain   总被引:6,自引:9,他引:6  
Abstract: Contents of 35 amino acids and related compounds were measured in whole rat brain, and in superficial areas of biopsied and autopsied human brain, after incubation for various intervals at temperatures simulating those likely to occur in cadavers under mortuary conditions. These data should aid interpretation of values for amino compounds determined in autopsied brain from patients with neurological or psychiatric disorders. The contents of glutamic acid, glutamine, taurine, phosphoethanolamine, cystathionine, and homocarnosine remain unchanged for long periods in human brain. Aspartic acid content is stable for 4 h after death, but thereafter rises rapidly. Glycine content rises rapidly, as do the contents of most amino acid components of proteins. Glutathione content drops rapidly in human brain after death. GABA content is stable for about 30 min, and rises to a maximum 2 to 3 h after death, after which it remains unchanged for at least 24 h. In rat brain, GABA content rises more rapidly, aspartate content rises more slowly, homocarnosine content decreases progressively, and glycerophosphoethanolamine content decreases more rapidly than in human brain.  相似文献   

20.
Although the cerebral cortical dopamine D(1) receptor is considered to play a role in normal and abnormal brain function, little information is available on its characteristics in human brain. We compared dopamine-stimulated adenylyl cyclase (AC) activity in homogenates of cerebral cortex (frontal, temporal, parietal, occipital and cingulate cortex) of autopsied brain of neurologically normal subjects to that in striatum. Cerebral cortical AC activity was modestly and dose-dependently stimulated by dopamine (maximal 20-30%) with low microM EC50s and such stimulation was inhibited by the selective dopamine D1 receptor antagonist SCH23390. The magnitude of the maximal stimulation by dopamine was similar in autopsied and biopsied cerebral cortex. The extent of maximal stimulation was similar to that in dopamine-rich striatum (caudate, putamen and nucleus accumbens), despite much lower density of dopamine D1 receptors in cerebral cortex vs. striatum. The EC50 for dopamine stimulation in cerebral cortex (approximately 1 microM) was lower than that for caudate and putamen (approximately 3 microM). No detectable dopamine stimulation was observed in cerebellar cortex, thalamus or hippocampus. Dopamine stimulation in both cerebral cortex and striatum was independent of calcium activation. We conclude that dopamine stimulated AC can be measured in cerebral cortex of human brain allowing for the possibility that this process can be examined in human brain disorders in which dopaminergic abnormalities are suspected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号