首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS–polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 μM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 μM, while the mutant enzyme loosened substrate inhibition.  相似文献   

2.
Two genes of Pseudomonas putida (IFO 12996) which code for enzymes participating in amino acid metabolism, were cloned in Escherichia coli C600 using pBR322 as a vector. pST7549 is a 7.9 kb hybrid plasmid DNA which is composed of four SalI fragments (0.3, 1.4, 1.9 and 4.3 kb), and codes for β-isopropylmalate dehydrogenase (EC 1.1.1.85) in l-leucine biosynthesis. The enzyme activity in the crude extract from E. coli C600 bearing pST7549 was 80 ~ 90% lower than that of E. coli K12 or P. putida. When the foreign SalI fragments derived from P. putida were subcloned, a 1.9 kb SalI fragment was found to encode β-isopropylmalate dehydrogenase and it did not contain the promoter of P. putida DNA. Plasmid pST6961 has a 1.8 kb insert derived from the P. putida DNA in the SalI site of pBR322. E. coli cells carrying this recombinant plasmid show no leucine racemase activity and no d-leucine transaminase activity, but five-times higher d-leucine oxidation activity than the host strain, E. coli. Enzymological studies have suggested that plasmid pST6961 codes for d-amino acid dehydrogenase, a key enzyme in d-amino acid metabolism.  相似文献   

3.
Catechol and 3-methylcatechol were produced from benzene and toluene respectively using different mutants of Pseudomonas putida. P. putida 2313 lacked the extradiol cleavage enzyme, catechol 2,3-oxygenase, allowing overproduction of 3-methylcatechol from toluene to a level of 11.5 mM (1.27 g·1-1) in glucose fed-batch culture. P. putida 6(12), a mutant of P. putida 2313, lacked both catechol-oxygenase and catechol 1,2-oxygenase, and accumulated catechol from benzene to a level of 27.5mM(3g·1-1).

In both biotransformations product formation ceased within 10 hours of feeding the aromatic substrate, and this was due to product inhibition by the catechols. The primary site of catechol toxicity was inhibition of the aromatic dioxygenase. Neither cis-toluene dihydrodiol cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene), nor cis-benzene dihydrodiol (cis-l,2-dihydroxy-3-methylcyclohexa-3,5-diene) dehydrogenase was significantly inhibited by catechol overproduction whereas both ring activating dioxygenases were inhibited within 4-6 hours of the maximum product concentration being attained.

3-Methylcatechol overproduction from toluene was also studied using a continuous product removal system. Granular activated charcoal removed 3-methylcatechol efficiently and was easily regenerated by washing with ethyl acetate. Using P. putida 2313, it was shown that the final product concentration increased approximately fourfold. Additional products were formed and the significance of these are discussed.  相似文献   

4.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

5.
Successive feeding of phenol at concentrations of less than 5.5 mM into a thick suspension of Trichosporon cutaneum WY 2-2 precultured in MPY-medium resulted in a high yield (approximately 28.7 g wet cells/liter) of intact cells capable of decomposing phenol actively (3.7 μmol/min/g of wet cells).

The effects of pH and additions of ethanol and 2-mercaptoethanol were tested on the stability of crude extracts from the strain grown on phenol. The crude extracts were stable at a pH range of 7.6 and 8.3, and were stable for 35 days when 10% ethanol and 5 mM 2-mercaptoethanol were added.

A highly purified preparation of catechol 1,2-oxygenase was obtained from strain WY 2-2 grown on phenol. The purified enzyme was homogeneous on polyacrylamide disc-gel electrophoresis. The enzyme had a molecular weight of about 105,000 and gave rise to subunits of molecular weight of 35,000 by SDS gel electrophoresis. Therefore, the enzyme appears to be a trimer of subunits with identical molecular weight. The Michaelis constants were 9.0 μM for catechol and 6.8 μM for 4-methylcatechol. The enzyme exhibited higher activities towards 4-methylcatechol and hydroxyquinol than towards catechol, and had essentially the same substrate specificity as the crude extracts. 4-Methylcatechol completely inhibited the enzyme activity towards catechol.  相似文献   

6.
Summary Host Factor (HF)1, is a 12000 molecular weight polypeptide that is found in uninfected Escherichia coli and is required as a hexamer along with Q replicase for in vitro replication of Q phage RNA. It has recently been found to be associated with ribosomes and to bind tightly to poly(A).We report here the identification and purification of HF from Pseudomonas putida. HF can be detected in crude extracts by both functional activity in the Q RNA replication assay and by immunodiffusion with antibody made against E. coli HF. HF from E. coli and P. putida chromatograph similarly on DEAE-cellulose and phosphocellulose. They have similar but not identical molecular weights as judged by SDS-polyacrylamide gel electrophoresis. Like E. coli HF, P. putida HF was found to be associated with ribosomes and to bind tightly to poly (A). Furthermore, the pure protein from P. putida has full functional activity in the in vitro Q RNA replication assay.The findings that HF has been conserved during evolution, is associated with ribosomes, and binds poly(A), suggest that HF may be an important translational element in uninfected cells and that its role involves an interaction with RNA.Research supported by National Institutes of Health Grant GM 21024.  相似文献   

7.
L-Pipecolic acid is a chiral pharmaceutical intermediate. An enzymatic system for the synthesis of L-pipecolic acid from L-lysine by commercial L-lysine α-oxidase from Trichoderma viride and an extract of recombinant Escherichia coli cells coexpressing Δ1-piperideine-2-carboxylate reductase from Pseudomonas putida and glucose dehydrogenase from Bacillus subtilis is described. A laboratory-scale process provided 27 g/l of L-pipecolic acid in 99.7% e.e.  相似文献   

8.
Pseudomonas putida 10.2, a 3-chlorobenzoate (3CBa)-degrading bacterium, was isolated from a soil sample obtained from an agricultural area in Chiang Mai, Thailand. This bacterium could degrade 2mm 3CBa very rapidly with the concomitant formation of chloride ion when grown in mineral salt-yeast extract medium. The presence of glucose, lactose and pyruvate in the medium reduced the capability of this bacterium to degrade 3CBa. Metabolites such as 3-chlorocatechol (3CC), catechol and cis,cis-muconic acid (muconate) could be detected in the growth medium or in cell suspensions when 3CBa was used as the substrate. Furthermore, when crude enzyme extract prepared from 3CBa-grown P. putida 10.2 was incubated with 3CC, catechol and muconate could be detected in the reaction mixtures. Thus, the biodegradation pathway of 3CBa by P. putida 10.2 was proposed to involve transformation of 3CBa to 3CC. The dehalogenation step is believed to involve removal of chloride from 3CC to form catechol, which is subsequently converted to muconate.  相似文献   

9.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

10.
Summary Mercury resistant transformant clone ofEscherichia coli 5K bearing the recombinant mini-plasmid pHg (13 MDa) was obtained after treatment of the conjugative 60 MDa R plasmid pBH100 (from wild strainE. coli) withPstI followed by fragment ligation (ligase).  相似文献   

11.
Catechol 1,2-dioxygenase has been purified 46-fold from cells of Rhizobium trifolii TA1 grown on benzoate plus glucose. The dioxygenase had a molecular weight of 107,000 and a sub-unit molecular weight of 59,000. The enzyme had a K m of 2 M for catechol and also cleaved 4-methylcatechol. The dioxygenase contained 2 g atoms of Fe3+ per mole of enzyme which could be removed by treatment with 1,10-phenanthroline, resulting in a complete loss of activity; reactivation of the enzyme occurred specifically with Fe3+.  相似文献   

12.
Herein, we synthesized (R)-phenylacetylcarbinol (PAC), a pharmaceutical intermediate for ephedrine and pseudoephedrine, from benzaldehyde and pyruvate using a recombinant pyruvate decarboxylase (PDC) from Zymomonas mobilis. A whole cell reaction consisting of 30 mM benzaldehyde, 60 mM pyruvate, and a mutant PDC enzyme (PDC W329M; 1.6 mg DCW/mL) produced 12.4 mM (R)-PAC and less than 0.3 mM benzyl alchohol in 15 h at 20°C, outperforming the crude enzyme extract reaction (1.2 mM (R)-PAC) and minimizing formation of benzyl alchohol, the major by-product of S. cerevisiae whole cell reaction. These observations suggested that recombinant E. coli whole cell reactions are more efficient than crude enzyme extract or yeast-based reactions. We also demonstrated that the E. coli whole cell reaction performed effectively without expensive thiamin diphosphate cofactor. Finally, whole cell reaction (8 mg DCW/mL) was carried out with 200 mM benzaldehyde, 400 mM pyruvate in 10 mL of 500 mM phosphate buffer (pH 6.5), and 72 mM (R)-PAC was produced with 36% conversion for 15 h. © KSBB  相似文献   

13.
ThepcbC gene encoding (4-chloro-)2,3-dihydroxybiphenyl dioxygenase was cloned from the genomic DNA ofPseudomonas sp. P20 using pKT230 to construct pKK1. A recombinant strain,E. coli KK1, was selected by transforming the pKK1 intoE. coli XL1-Blue. Another recombinant strain,Pseudomonas sp. DJP-120, was obtained by transferring the pKK1 ofE. coli KK1 intoPseudomonas sp. DJ-12 by conjugation. Both recombinant strains showed a 23.7 to 26.5 fold increase in the degradation activity to 2,3-dihydroxybiphenyl compared with that of the natural isolate,Pseudomonas sp. DJ-12. The DJP-120 strain showed 24.5, 3.5, and 4.8 fold higher degradation activities to 4-chlorobiphenyl, catechol, and 3-methylcatechol than DJ-12 strain, respectively. The pKK1 plasmid of both strains and their ability to degrade 2,3-dihydroxybiphenyl were stable even after about 1,200 generations.  相似文献   

14.
Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 oxidizes toluene to 3- and 4-methylcatechol and oxidizes benzene to form phenol; in this study ToMO was found to also form catechol and 1,2,3-trihydroxybenzene (1,2,3-THB) from phenol. To synthesize novel dihydroxy and trihydroxy derivatives of benzene and toluene, DNA shuffling of the alpha-hydroxylase fragment of ToMO (TouA) and saturation mutagenesis of the TouA active site residues I100, Q141, T201, and F205 were used to generate random mutants. The mutants were initially identified by screening with a rapid agar plate assay and then were examined further by high-performance liquid chromatography and gas chromatography. Several regiospecific mutants with high rates of activity were identified; for example, Escherichia coli TG1/pBS(Kan)ToMO expressing the F205G TouA saturation mutagenesis variant formed 4-methylresorcinol (0.78 nmol/min/mg of protein), 3-methylcatechol (0.25 nmol/min/mg of protein), and methylhydroquinone (0.088 nmol/min/mg of protein) from o-cresol, whereas wild-type ToMO formed only 3-methylcatechol (1.1 nmol/min/mg of protein). From o-cresol, the I100Q saturation mutagenesis mutant and the M180T/E284G DNA shuffling mutant formed methylhydroquinone (0.50 and 0.19 nmol/min/mg of protein, respectively) and 3-methylcatechol (0.49 and 1.5 nmol/min/mg of protein, respectively). The F205G mutant formed catechol (0.52 nmol/min/mg of protein), resorcinol (0.090 nmol/min/mg of protein), and hydroquinone (0.070 nmol/min/mg of protein) from phenol, whereas wild-type ToMO formed only catechol (1.5 nmol/min/mg of protein). Both the I100Q mutant and the M180T/E284G mutant formed hydroquinone (1.2 and 0.040 nmol/min/mg of protein, respectively) and catechol (0.28 and 2.0 nmol/min/mg of protein, respectively) from phenol. Dihydroxybenzenes were further oxidized to trihydroxybenzenes with different regiospecificities; for example, the I100Q mutant formed 1,2,4-THB from catechol, whereas wild-type ToMO formed 1,2,3-THB (pyrogallol). Regiospecific oxidation of the natural substrate toluene was also checked; for example, the I100Q mutant formed 22% o-cresol, 44% m-cresol, and 34% p-cresol, whereas wild-type ToMO formed 32% o-cresol, 21% m-cresol, and 47% p-cresol.  相似文献   

15.
Mutual effects between the symbiotic bacteria of entomopathogenic nematodes, Photorhabdus luminescens and Xenorhabdus poinarii, and entomopathogenic fungi were investigated in vitro. A dual culture assay on nutrient agar supplemented with bromothymol blue and triphenyltetrazolium chloride (NBTA) medium revealed that P. luminescens is antagonistic to Metarhizium anisopliae, Beauveria bassiana, B. brongniartii and Paecilomyces fumosoroseus by inhibiting their growth and conidial production; the fungal growth was not inhibited by X. poinarii. In a second laboratory experiment, crude extract produced by M. anisopliae was tested for its activity against P. luminescens and X. poinarii. Crude extract from M. anisopliae was antibacterial to P. luminescens and X. poinarii at 1000 g/ml and inhibited their growth on NBTA, but had no effect at 100 or 10 g/ml. The influence of the crude extract of M. anisopliae on the dispersal of infective juveniles (IJs) of Heterorhabditis megidis and Steinernema glaseri was assayed on Sabouraud Dextrose Agar (SDA) plates. Results showed that the crude extract of M. anisopliae had no toxic effects even at highest concentration (1000 g/ml).  相似文献   

16.
A DNA sequence encodingN-acylamino acid racemase (AAR) was inserted downstream from the T7 promoter in pET3c. The recombinant plasmid was introduced intoEscherichia coli MM194 lysogenized with a bacteriophage having a T7 RNA polymerase gene. The amount of AAR produced by theE. coli transformant was 1100-fold more than that produced byAmycolatopsis sp. TS-1-60, the DNA donor strain. The AAR was purified to homogeneity from the crude extract of theE. coli transformant by two steps: heat treatment and Butyl-Toyopearl column chromatography. Bioreactors for the production of optically active amino acids were constructed with DEAE-Toyopearl-immobilized AAR andd- orl-aminoacylase.d- orl-methionine was continuously produced with a high yield fromN-acetyl-dc-methionine by the bioreactor.  相似文献   

17.
The over-expressed extracellular sucrase (SacC) of Zymomonas mobilisfrom a recombinant Escherichia coli (pZSP62) carrying the sacC gene was purified partially by repeated cycles of freezing and thawing. This method separated the highly expressed recombinant protein from the bulk of endogenous E. coli proteins. The enzyme was further purified 14 fold with a 55% yield from the cellular extract of E. coli by hydroxyapatite chromatography. The purified enzyme had a Mr of 46 kDa by SDS-PAGE. Its km value for sucrose was 86 mM and was optimal at pH 5.0 and at 36°C.  相似文献   

18.
A genomic library of the phenol-degrading bacterium Pseudomonas putida BH was constructed in the broad host range cosmid pVK100 and introduced into Escherichia coli HB101. One of the recombinant cosmids recovered from catechol- and/or 2-hydroxymuconic semialdehyde-accumulating clones, pS10–45, had a 19.6-kb insert fragment which allowed P. putida KT2440 to grow on phenol as a sole carbon and energy source. Subcloning and expression studies indicated that the phenol hydroxylase gene cluster (pheA) is located on a 6.1-kb SacI fragment. The results of DNA sequencing of the SacI fragment revealed that the pheA gene cluster encodes a multicomponent phenol hydroxylase.  相似文献   

19.
Nitrilases have attracted tremendous attention for the preparation of optically pure carboxylic acids. This article aims to address the production and utilization of a highly enantioselective nitrilase from Pseudomonas putida MTCC 5110 for the hydrolysis of racemic mandelonitrile to (R)-mandelic acid. The nitrilase gene from P. putida was cloned in pET 21b(+) and over-expressed as histidine-tagged protein in Escherichia coli. The histidine-tagged enzyme was purified from crude cell extracts of IPTG-induced cells of E. coli BL21 (DE3). Inducer replacement studies led to the identification of lactose as a suitable and cheap alternative to the costly IPTG. Effects of medium components, various physico-chemical, and process parameters (pH, temperature, aeration, and agitation) for the production of nitrilase by engineered E. coli were optimized and scaled up to a laboratory scale bioreactor (6.6 l). Finally, the recombinant E. coli whole-cells were utilized for the production of (R)-(−)-mandelic acid.  相似文献   

20.
Catechol 2,3-dioxygenase from the meta-cleavage pathway encoded on the TOL plasmid of Pseudomonas putida (pWWO) was investigated by electron microscopy. Negatively stained samples of the purified catechol 2,3-dioxygenase revealed that the enzyme consists of four subunits arranged in a tetrahedral conformation. Monoclonal antibodies raised against catechol 2,3-dioxygenase showed highly specific reactions and were used to localize the enzyme in Escherichia coli (pAW31) and P. putida (pWWO), using the protein A-gold technique carried out as a post-embedding immunoelectron microscopy procedure. Our in situ labeling studies revealed a cytoplasmic location of the catechol 2,3-dioxygenase in both cell types.Abbreviations C23O Catechol 2,3-dioxygenase - 3MB 3 Methylbenzoate - AK1 Anti-C23O-IgG-antibody - G Gold particle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号