首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conformational constraints of amino acid side chains in alpha-helices   总被引:3,自引:0,他引:3  
L Piela  G Nemethy  H A Scheraga 《Biopolymers》1987,26(8):1273-1286
The conformational freedom of amino acid side chains is strongly reduced when the side chains occur on an α-helix. A quantitative evaluation of this freedom has been carried out by means of conformational energy computations for all naturally occurring amino acids and for α-aminobutyric acid when they are placed in the middle of a right-handed poly(L-alanine) α-helix. One of the three possible rotameric states for rotation around the Cα ? Cβ bond (viz. g+) is excluded completely on the helix because of steric hindrance, and the relative populations of the other two rotamers (t and g?) are altered because of steric interactions and the reduction of hydrogen-bonding possibilities. The computed tendencies of the changes in distributions of rotamers, on going from an ensemble of all backbone conformations to the α-helix, agree with the observed tendencies in proteins. Minimum-energy side-chain conformations in an α-helix have been tabulated for use in conformational energy computations on polypeptides.  相似文献   

2.
Proline-induced distortions of transmembrane helices   总被引:14,自引:0,他引:14  
Proline residues in the transmembrane (TM) alpha-helices of integral membrane proteins have long been suspected to play a key role for helix packing and signal transduction by inducing regions of helix distortion and/or dynamic flexibility (hinges). In this study we try to characterise the effect of proline on the geometric properties of TM alpha-helices. We have examined 199 transmembrane alpha-helices from polytopic membrane proteins of known structure. After examining the location of proline residues within the amino acid sequences of TM helices, we estimated the helix axes either side of a hinge and hence identified a hinge residue. This enabled us to calculate helix kink and swivel angles. The results of this analysis show that proline residues occur with a significant concentration in the centre of sequences of TM alpha-helices. In this location, they may induce formation of molecular hinges, located on average about four residues N-terminal to the proline residue. A superposition of proline-containing TM helices structures shows that the distortion induced is anisotropic and favours certain relative orientations (defined by helix kink and swivel angles) of the two helix segments.  相似文献   

3.
Proline kinks in transmembrane alpha-helices   总被引:15,自引:0,他引:15  
Integral membrane proteins often contain proline residues in their presumably alpha-helical transmembrane segments. This is in marked contrast to globular proteins, where proline is rarely found inside alpha-helices. Proline residues cause kinks in helices, and, in addition to leaving the i-4 backbone carbonyl without its normal hydrogen bond donor, also sterically prevent the (i-3)-carbonyl-(i + l)-amide backbone hydrogen bond from forming. Here, some structural aspects of proline kinks in transmembrane helices are discussed on the basis of an analysis of Pro-kinked helices in the photosynthetic reaction center and bacteriorhodopsin, as well as results from an analysis of Pro-containing transmembrane segments identified in the NBRF Protein Sequence Databank.  相似文献   

4.
A number of ion channels contain transmembrane (TM) alpha-helices that contain proline-induced molecular hinges. These TM helices include the channel-forming peptide alamethicin (Alm), the S6 helix from voltage-gated potassium (Kv) channels, and the D5 helix from voltage-gated chloride (CLC) channels. For both Alm and KvS6, experimental data implicate hinge-bending motions of the helix in an aspect of channel gating. We have compared the hinge-bending motions of these TM helices in bilayer-like environments by multi-nanosecond MD simulations in an attempt to describe motions of these helices that may underlie possible modes of channel gating. Alm is an alpha-helical channel-forming peptide, which contains a central kink associated with a Gly-x-x-Pro motif in its sequence. Simulations of Alm in a TM orientation for 10 ns in an octane slab indicate that the Gly-x-x-Pro motif acts as a molecular hinge. The S6 helix from Shaker Kv channels contains a Pro-Val-Pro motif. Modeling studies and recent experimental data suggest that the KvS6 helix may be kinked in the vicinity of this motif. Simulations (10 ns) of an isolated KvS6 helix in an octane slab and in a POPC bilayer reveal hinge-bending motions. A pattern-matching approach was used to search for possible hinge-bending motifs in the TM helices of other ion channel proteins. This uncovered a conserved Gly-x-Pro motif in TM helix D5 of CLC channels. MD simulations of a model of hCLC1-D5 spanning an octane slab suggest that this channel also contains a TM helix that undergoes hinge-bending motion. In conclusion, our simulations suggest a model in which hinge-bending motions of TM helices may play a functional role in the gating mechanisms of several different families of ion channels.  相似文献   

5.
Complementary packing of alpha-helices in proteins   总被引:10,自引:0,他引:10  
Efimov AV 《FEBS letters》1999,452(1-2):3-6
  相似文献   

6.
To understand the role of aromatic-aromatic interactions in imparting specificity to the folding process, the geometries of four aromatic residues with different sequence spacing, located in alpha-helices or five residues from helical ends, interacting with each other have been elucidated. The geometry is found to depend on the sequence difference. Specific interactions (C-H...pi and N-H...pi) which result from this geometry may cause a given pair of residues (such as Phe-His) with a particular sequence difference to occur more than expected. The most conspicuous residue in an aromatic pair in the context of helix stability is His, which is found at the last (C1) position or the two positions (Ncap and Ccap) immediately flanking the helix. An alpha-helix and a contiguous 3(10)-helix or two helices separated by a non-helical residue can have interacting aromatic pairs, the geometry of interaction and the relative orientation between the helices being rather fixed. Short helices can also have interacting residues from either side.  相似文献   

7.
Discovering structural correlations in alpha-helices.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have developed a new representation for structural and functional motifs in protein sequences based on correlations between pairs of amino acids and applied it to alpha-helical and beta-sheet sequences. Existing probabilistic methods for representing and analyzing protein sequences have traditionally assumed conditional independence of evidence. In other words, amino acids are assumed to have no effect on each other. However, analyses of protein structures have repeatedly demonstrated the importance of interactions between amino acids in conferring both structure and function. Using Bayesian networks, we are able to model the relationships between amino acids at distinct positions in a protein sequence in addition to the amino acid distributions at each position. We have also developed an automated program for discovering sequence correlations using standard statistical tests and validation techniques. In this paper, we test this program on sequences from secondary structure motifs, namely alpha-helices and beta-sheets. In each case, the correlations our program discovers correspond well with known physical and chemical interactions between amino acids in structures. Furthermore, we show that, using different chemical alphabets for the amino acids, we discover structural relationships based on the same chemical principle used in constructing the alphabet. This new representation of 3-dimensional features in protein motifs, such as those arising from structural or functional constraints on the sequence, can be used to improve sequence analysis tools including pattern analysis and database search.  相似文献   

8.
Prediction of alpha-helices in glucagon.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

9.
Conformational free energy calculations have been carried out for proline-containing alanine-based pentadecapeptides with the sequence Ac-(Ala)n-Pro-(Ala)m-NHMe, where n + m = 14, to figure out the positional preference of proline in alpha-helices. The relative free energy of each peptide was calculated by subtracting the free energy of the extended conformation from that of the alpha-helical one, which is used here as a measure of preference. The highest propensity is found for the peptide with proline at the N-terminus (i.e., Ncap + 1 position), and the next propensities are found at Ncap, N' (Ncap - 1), and C' (Ccap + 1) positions. These computed results are reasonably consistent with the positional propensities estimated from X-ray structures of proteins. The breaking in hydrogen bonds around proline is found to play a role in destabilizing alpha-helical conformations, which, however, provides the favored hydration of the corresponding N-H and C=O groups. The highest preference of proline at the beginning of alpha-helix appears to be due to the favored electrostatic and nonbonded energies between two residues preceding proline and the intrinsic stability of alpha-helical conformation of the proline residue itself as well as no disturbance in hydrogen bonds of alpha-helix by proline. The average free energy change for the substitution of Ala by Pro in a alpha-helix is computed to be 4.6 kcal/mol, which is in good agreement with the experimental value of approximately 4 kcal/mol estimated for an oligopeptide dimer and proteins of barnase and T4 lysozyme.  相似文献   

10.
Crystal structure analysis of proline-containing alpha-helices in proteins has been carried out. High resolution crystal structures were selected from the Protein Data Bank. Apart from the standard internal parameters, some parameters which are specifically related to the bend in the helix due to proline have been developed and analyzed. Finally the position and nature of these helices and their interactions with the rest of the protein have been analyzed.  相似文献   

11.
Since Popot and Engelman proposed the 'two-stage' thermodynamic framework for dissecting the energetics of helical membrane protein folding, scientists have endeavored to measure the free energies of helix-helix associations to better understand how interactions between helices stabilize and specify native membrane protein folds. Chief among the biophysical tools used to probe these energies are sedimentation equilibrium analytical ultracentrifugation, fluorescence resonance energy transfer, and thiol disulfide interchange experiments. Direct and indirect comparisons of thermodynamic results suggest that differences in helix-helix stabilities between micelles and bilayers may not be as large as previously anticipated. Genetic approaches continue to become more quantitative, and the propensities for helices to interact in bacterial membranes generally correlate well with in vitro measurements.  相似文献   

12.
Stereochemistry of salt-bridge formation in alpha-helices and beta-strands   总被引:1,自引:0,他引:1  
M F Perutz  G Fermi 《Proteins》1988,4(4):294-295
  相似文献   

13.
Goliaei B  Minuchehr Z 《FEBS letters》2003,537(1-3):121-127
Amino acids seem to have specific preferences for various locations in alpha-helices. These specific preferences, called singlet local propensity (SLP), have been determined by calculating the preference of occurrence of each amino acid in different positions of the alpha-helix. We have studied the occurrence of amino acids, single or pairs, in different positions, singlet or doublet, of alpha-helices in a database of 343 non-homologous proteins representing a unique superfamily from the SCOP database with a resolution better than 2.5 A from the Protein Data Bank. The preference of single amino acids for various locations of the helix was shown by the relative entropy of each amino acid with respect to the background. Based on the total relative entropy of all amino acids occurring in a single position, the N(cap) position was found to be the most selective position in the alpha-helix. A rigorous statistical analysis of amino acid pair occurrences showed that there are exceptional pairs for which, the observed frequency of occurrence in various doublet positions of the alpha-helix is significantly different from the expected frequency of occurrence in that position. The doublet local propensity (DLP) was defined as the preference of occurrences of amino acid pairs in different doublet positions of the alpha-helix. For most amino acid pairs, the observed DLP (DLP(O)) was nearly equal to the expected DLP (DLP(E)), which is the product of the related SLPs. However, for exceptional pairs of amino acids identified above, the DLP(O) and DLP(E) values were significantly different. Based on the relative values of DLP(O) and DLP(E), exceptional amino acid pairs were divided into two categories. Those, for which the DLP(O) values are higher than DLP(E), should have a strong tendency to pair together in the specified position. For those pairs which the DLP(O) values are less than DLP(E), there exists a hindrance in neighboring of the two amino acids in that specific position of the alpha-helix. These cases have been identified and listed in various tables in this paper. The amount of mutual information carried by the exceptional pairs of amino acids was significantly higher than the average mutual information carried by other amino acid pairs. The average mutual information conveyed by amino acid pairs in each doublet position was found to be very small but non-zero.  相似文献   

14.
Considerable physical evidence has been accumulated in support of the polarity of alpha-keratin fibres and is summarised here. Dielectric loss and dielectric dipole movement in dry intact fibres as they undergo thermal transition above 200 degrees C show alpha-keratin to be a polar structure. X-ray diffraction has shown that this transition corresponds to the randomisation of the organised alpha-helical structure resulting in the loss of polarity of the fibre. The piezoelectric properties of alpha-keratin can only be explained if its alpha-helical dipoles in the ordered structure alpha-keratin are synergistically aligned in the axial direction. If the alpha-helical units of the IFs of alpha-keratin fibre were in an anti-parallel conformation then dry alpha-keratin would show no polarity. FTIR measurements on alpha-keratin fibres extended in water at 21 and 95 degrees C explain the formation of anti-parallel beta-structures when fibres are extended in steam. Contrary to in vitro experimental data there is clear evidence that native alpha-keratin fibres are polar structures with the alpha-helices aligned in a parallel conformation.  相似文献   

15.
Proline-induced germ-tube formation and cell-cell aggregation in four strains of Candida albicans were completely inhibited when the pH of the medium was 5.0 or lower, whereas morphogenesis induced by N-acetylglucosamine (GlcNAc) was unaffected even at pH 4.5. The pH sensitivity of proline-induced germ-tube formation was not caused by a modulation of proline uptake, which was unchanged over the pH range 4.5-6.5. The proline uptake system was specific, constitutive and subject to ammonium repression, and only one permease was detected, with a Km of 179 microM. Cultures deprived of nitrogen in the presence of glucose were derepressed for proline uptake but the yeast-mycelial transition could not be mediated by either proline or GlcNAc. The inhibition of morphogenesis was reversed when the nitrogen starvation was relieved by the addition of ammonium ions, proline, or certain amino acids. These results indicate that the nitrogen status of the cells is critical for the morphogenesis of C. albicans.  相似文献   

16.
17.
Wang J  Feng JA 《Protein engineering》2003,16(11):799-807
This paper reports an extensive sequence analysis of the alpha-helices of proteins. alpha-Helices were extracted from the Protein Data Bank (PDB) and were divided into groups according to their sizes. It was found that some amino acids had differential propensity values for adopting helical conformation in short, medium and long alpha-helices. Pro and Trp had a significantly higher propensity for helical conformation in short helices than in medium and long helices. Trp was the strongest helix conformer in short helices. Sequence patterns favoring helical conformation were derived from a neighbor-dependent sequence analysis of proteins, which calculated the effect of neighboring amino acid type on the propensity of residues for adopting a particular secondary structure in proteins. This method produced an enhanced statistical significance scale that allowed us to explore the positional preference of amino acids for alpha-helical conformations. It was shown that the amino acid pair preference for alpha-helix had a unique pattern and this pattern was not always predictable by assuming proportional contributions from the individual propensity values of the amino acids. Our analysis also yielded a series of amino acid dyads that showed preference for alpha-helix conformation. The data presented in this study, along with our previous study on loop sequences of proteins, should prove useful for developing potential 'codes' for recognizing sequence patterns that are favorable for specific secondary structural elements in proteins.  相似文献   

18.
Wimley WC  White SH 《Biochemistry》2000,39(15):4432-4442
Direct measurement of the free energies of transfer of hydrophobic membrane-spanning alpha-helices from water to membranes is important for the determination of an accurate experiment-based hydrophobicity scale for membrane proteins. An important objective of such a scale is to account for the presently unknown thermodynamic cost of partitioning hydrogen-bonded peptide bonds into the membrane hydrocarbon core. We describe here the physical properties of a transmembrane (TM) peptide, TMX-1, designed to test the feasibility of engineering peptides that spontaneously insert across bilayers but that have the important property of measurable monomeric water solubility. TMX-1, Ac-WNALAAVAAAL-AAVAAALAAVAAGKSKSKS-NH(2), is a 31-residue sequence with a 21-residue nonpolar core, N- and C-caps to favor helix formation, and a highly polar C-terminus to improve solubility and to control directionality of insertion into lipid vesicles. TMX-1 appeared to be soluble in water up to a concentration of at least 1 mg/mL (0.3 mM). However, fluorescence spectroscopy, fluorescence quenching, and circular dichroism (CD) spectroscopy indicated that the high solubility was due to the formation of molecular aggregates that persisted at peptide concentrations down to at least 0.1 microM peptide. Nevertheless, aqueous TMX-1 partitioned strongly into membrane vesicles with apparent mole-fraction free-energy values of -7.1 kcal mol(-1) for phosphatidylcholine (POPC) vesicles and -8.2 kcal mol(-1) for phosphatidylglycerol (POPG) vesicles. CD spectroscopy of TMX-1 in oriented multilayers formed from either lipid disclosed a very strong preference for a transmembrane alpha-helical conformation. When TMX-1 was added to preformed vesicles, it was fully helical. A novel fluorescence resonance energy transfer (FRET) method demonstrated that at least 50% of the TMX-1 insered spontaneously across the vesicle membranes. Binding and insertion were found to be fully reversible for POPC vesicles but not POPG vesicles. TMX-1 was thus found to have many of the properties required for thermodynamic measurements of TM peptide insertion. Importantly, the results obtained delineate the experimental problems that must be considered in the design of peptides that can partition spontaneously and reversibly as monomers into and across membranes. Our success with TMX-1 suggests that these problems are not insurmountable.  相似文献   

19.
Isotope editing of amide infrared bands not only localises secondary structural elements within the protein but also yields conformational information that is not available from the linear dichroism of aligned samples without isotope editing. The additional information that can be derived on the orientational distribution of alpha-helices in membranes by the combined use of different amide bands and several positions of labelling is presented here. Also, the relationship between the azimuthal orientation of the transition moment and the protein structure is treated explicitly. A comprehensive analysis of the infrared dichroism for beta-sheets and beta-barrels is given here, for the first time. The orientation of the individual transition moments in a beta-sheet that is essential for this analysis is derived for the different amide bands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号