首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the G + C content of a gene is correlated to that of the isochore in which it resides, and early replicating isochores are thought to be relatively G + C rich, early replicating genes should also be rich in G + C. This hypothesis is tested on a sample of 44 mammalian genes for which replication time data and sequence information are available. Early replicating genes do not appear to be more G + C rich than late replicating genes, instead there is considerable variation in the G + C content of genes replicated during both halves of S phase. These results show that both G + C rich and poor fractions of the genome are replicated early and late in the cell cycle, and suggest that isochores are not maintained by the replication of DNA sequences in compositionally biased free nucleotide pools.  相似文献   

2.
Using a general form of the directional mutation theory, this paper analyzes the effect of mutations in mutator genes on the G + C content of DNA, the frequency of substitution mutations, and evolutionary changes (cumulative mutations) under various degrees of selective constraints. Directional mutation theory predicts that when the mutational bias between A/T and G/C nucleotide pairs is equilibrated with the base composition of a neutral set of DNA nucleotides, the mutation frequency per gene will be much lower than the frequency immediately after the mutator mutation takes place. This prediction explains the wide variation of the DNA G + C content among unicellular organisms and possibly also the wide intragenomic heterogeneity of third codon positions for the genes of multicellular eukaryotes. The present analyses lead to several predictions that are not consistent with a number of the frequently held assumptions in the field of molecular evolution, including belief in a constant rate of evolution, symmetric branching of phylogenetic trees, the generality of higher mutation frequency for neutral sets of nucleotides, the notion that mutator mutations are generally deleterious because of their high mutation rates, and teleological explanations of DNA base composition. Presented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

3.
Mammalian DNA replication: mutation biases and the mutation rate   总被引:4,自引:0,他引:4  
Experimental studies have shown that the fidelity of DNA replication can be affected by the concentrations of free deoxyribonucleotides present in the cell. Replication of mammalian chromosomes is achieved using pools of newly-synthesized deoxyribonucleotides which fluctuate during the cell cycle. Since regions of mammalian chromosomes are replicated sequentially, there is the potential for differences among mammalian loci in both the relative and absolute frequencies of the various transitional and transversional mutations which may occur. Where these mutations are effectively neutral, at silent sites in genes and in non-coding sequences, this may result in different rates of evolution and in different base compositions, as have been observed in data from mammalian genes. A simple model of the DNA replication process is developed to describe how the mutation rate could be affected by the G + C contents of the deoxyribonucleotide pools and of the replicating DNA. Mutation rates are predicted to vary from locus to locus; only in the particular case of identical G + C contents in the DNA locus and the deoxyribonucleotide pools, and no proofreading, will the mutation rate be uniform over all loci.  相似文献   

4.
A Eyre-Walker 《Genetics》1999,152(2):675-683
It has been suggested that mutation bias is the major determinant of base composition bias at synonymous, intron, and flanking DNA sites in mammals. Here I test this hypothesis using population genetic data from the major histocompatibility genes of several mammalian species. The results of two tests are inconsistent with the mutation hypothesis in coding, noncoding, CpG-island, and non-CpG-island DNA, but are consistent with selection or biased gene conversion. It is argued that biased gene conversion is unlikely to affect silent site base composition in mammals. The results therefore suggest that selection is acting upon silent site G + C content. This may have broad implications, since silent site base composition reflects large-scale variation in G + C content along mammalian chromosomes. The results therefore suggest that selection may be acting upon the base composition of isochores and large sections of junk DNA.  相似文献   

5.
Lercher MJ  Hurst LD 《Gene》2002,300(1-2):53-58
One of the most abiding controversies in evolutionary biology concerns the role of neutral processes in molecular evolution. A main focus of the debate has been the evolution of isochores, the strong and systematic variation of base composition in mammalian genomes. One set of hypotheses argue that regions of similar GC are owing to localised mutational biases coupled with neutral evolution. The alternatives point to either selection or biased gene conversion as mechanisms to preferentially remove A or T bases, favouring G and C instead. Using a novel method, we compare models including such fixation biases to models based on mutation bias alone, under the assumption that non-coding, non-repetitive human DNA is at compositional equilibrium. While failing to fully explain the allele frequency distributions of recent single nucleotide polymorphism data, we show that the data are best fitted if the mutation bias is assumed to be constant across the genome, while fixation bias varies with GC content. We also attempt to estimate the strength of fixation bias, which increases linearly with increasing GC. Our approximation suggests that this force exists within the necessary parameter range: it is not so weak as to be drowned by random drift, but not so strong as to lead to exclusive use of G and C alone. Together these results demonstrate that mutation bias fails to explain the evolution of isochores, and suggest that either selection or biased gene conversion are involved.  相似文献   

6.
There is marked heterogeneity of nucleotide composition in mitochondrial DNA across divergent animals. Differences in nucleotide composition presumably reflect differences in directional nucleotide substitution for A+T or G+C nucleotides. In mitochondrial DNA, there is A+T directional nucleotide substitution in most (if not all) animals surveyed, and the magnitude of directional A+T nucleotide substitution differs greatly within and among groups. Differences in directional nucleotide substitution among lineages of mammals can be explained by changes in metabolic physiology. This relationship is thought to be mediated by the effect of oxygen radicals because these toxic compounds are by-products of aerobic metabolism and are known mutagens. Association between metabolism and nucleotide composition provides additional evidence in favor of the hypothesis that rates and patterns of nucleotide substitution in mitochondrial DNA can be influenced by factors that impinge on rates of endogenous DNA damage.   相似文献   

7.
An analysis of silent substitutions in pairwise comparisons of homologous genes from different mammals has shown that, in spite of individual fluctuations, their frequencies (which are very strongly correlated with the frequency of substitutions per synonymous site calculated according to Li et al. 1985) do not vary, on the average, with the GC levels of silent positions. This holds in the general case, in which silent positions of pairs of homologous genes share the same composition, namely in the human/other primates, human/artiodactyls, and in the mouse/rat pairs, as well as in the special cases in which the composition of silent positions are different, namely in the human/rabbit and the human/rat (or human/mouse) pairs. A slightly lower frequency found for low GC values in the human/bovine and human/pig pairs seems to be due to the specific gene samples used. These results contradict the previously claimed existence of differences in mutation rates and of mutational biases in third codon positions of coding sequences located in different isochores of mammalian genomes. They also imply that the variations in nucleotide precursor pools through the cell cycle and the differences in replication timing, or in repair efficiency, which were reported for different isochores, do not lead, as claimed, to differences in mutation rates, not in mutational biases in mammals. The differences claimed appear to be due to using small gene samples when individual fluctuations from gene to gene are relatively large. Correspondence to: G. Bernardi  相似文献   

8.
DNA composition dynamics across genomes of diverse taxonomy is a major subject of genome analyses. DNA composition changes are characteristics of both replication and repair machineries. We investigated 3,611,007 single nucleotide polymorphisms (SNPs) generated by comparing two sequenced rice genomes from distant inbred lines (subspecies), including those from 242,811 introns and 45,462 protein-coding sequences (CDSs). Neighboring-nucleotide effects (NNEs) of these SNPs are diverse, depending on structural content-based classifications (genomewide, intronic, and CDS) and sequence context-based categories (A/C, A/G, A/T, C/G, C/T, and G/T substitutions) of the analyzed SNPs. Strong and evident NNEs and nucleotide proportion biases surrounding the analyzed SNPs were observed in 1-3 bp sequences on both sides of an SNP. Strong biases were observed around neighboring nucleotides of protein-coding SNPs, which exhibit a periodicity of three in nucleotide content, constrained by a combined effect of codon-related rules and DNA repair mechanisms. Unlike a previous finding in the human genome, we found negative correlation between GC contents of chromosomes and the magnitude of corresponding bias of nucleotide C at -1 site and G at +1 site. These results will further our understanding of the mutation mechanism in rice as well as its evolutionary implications.  相似文献   

9.
BACKGROUND: Nucleotide substitution rates and G + C content vary considerably among mammalian genes. It has been proposed that the mammalian genome comprises a mosaic of regions - termed isochores - with differing G + C content. The regional variation in gene G + C content might therefore be a reflection of the isochore structure of chromosomes, but the factors influencing the variation of nucleotide substitution rate are still open to question. RESULTS: To examine whether nucleotide substitution rates and gene G + C content are influenced by the chromosomal location of genes, we compared human and murid (mouse or rat) orthologues known to belong to one of the chromosomal (autosomal) segments conserved between these species. Multiple members of gene families were excluded from the dataset. Sets of neighbouring genes were defined as those lying within 1 centiMorgan (cM) of each other on the mouse genetic map. For both synonymous substitution rates and G + C content at silent sites, neighbouring genes were found to be significantly more similar to each other than sets of genes randomly drawn from the dataset. Moreover, we demonstrated that the regional similarities in G + C content (isochores) and synonymous substitution rate were independent of each other. CONCLUSIONS: Our results provide the first substantial statistical evidence for the existence of a regional variation in the synonymous substitution rate within the mammalian genome, indicating that different chromosomal regions evolve at different rates. This regional phenomenon which shapes gene evolution could reflect the existence of 'evolutionary rate units' along the chromosome.  相似文献   

10.
11.
Summary Selective constraints on DNA sequence change were incorporated into a model of DNA divergence by restricting substitutions to a subset of nucleotide positions. A simple model showed that both mutation rate and the fraction of nucleotide positions free to vary are strong determinants of DNA divergence over time.When divergence between two species approaches the fraction of positions free to vary, standard methods that correct for multiple mutations yield severe underestimates of the number of substitutions per site. A modified method appropriate for use with DNA sequence, restriction site, or thermal renaturation data is derived taking this fraction into account. The model also showed that the ratio of divergence in two gene classes (e.g., nuclear and mitochondrial) may vary widely over time even if the ratio of mutation rates remains constant.DNA sequence divergence data are used increasingly to detect differences in rates of molecular evolution. Often, variation in divergence rate is assumed to represent variation in mutation rate. The present model suggests that differing divergence rates among comparisons (either among gene classes or taxa) should be interpreted cautiously. Differences in the fraction of nucleotide positions free to vary can serve as an important alternative hypothesis to explain differences in DNA divergence rates.  相似文献   

12.
The human genome is described in the literature as being composed of the isochores, i.e., long (hundreds of kilobases) segments with a homogeneous (G + C) content. We calculated the (G + C) content variations along the DNA molecules of the human chromosomes 21 and 22 and found the variations to be higher everywhere compared to the randomized sequences. Hence the (G + C) content is certainly not homogeneous on the isochore scale in the two human chromosomes. In addition, we found no significant difference between the two human molecules and the genome of E. coli regarding the (G + C) content variations. Hence no isochores are either present in the DNA molecules of the human chromosomes 21 and 22, or the isochores are also present in the genome of Escherichia coli. In any case, the present communication demonstrates that the isochores should be defined in unambiguous molecular terms if they are to be used for an up-to-date genome structure characterization.  相似文献   

13.
14.
Lobry JR  Sueoka N 《Genome biology》2002,3(10):research0058.1-research005814

Background

When there are no strand-specific biases in mutation and selection rates (that is, in the substitution rates) between the two strands of DNA, the average nucleotide composition is theoretically expected to be A = T and G = C within each strand. Deviations from these equalities are therefore evidence for an asymmetry in selection and/or mutation between the two strands. By focusing on weakly selected regions that could be oriented with respect to replication in 43 out of 51 completely sequenced bacterial chromosomes, we have been able to detect asymmetric directional mutation pressures.

Results

Most of the 43 chromosomes were found to be relatively enriched in G over C and T over A, and slightly depleted in G+C, in their weakly selected positions (intergenic regions and third codon positions) in the leading strand compared with the lagging strand. Deviations from A = T and G = C were highly correlated between third codon positions and intergenic regions, with a lower degree of deviation in intergenic regions, and were not correlated with overall genomic G+C content.

Conclusions

During the course of bacterial chromosome evolution, the effects of asymmetric directional mutation pressures are commonly observed in weakly selected positions. The degree of deviation from equality is highly variable among species, and within species is higher in third codon positions than in intergenic regions. The orientation of these effects is almost universal and is compatible in most cases with the hypothesis of an excess of cytosine deamination in the single-stranded state during DNA replication. However, the variation in G+C content between species is influenced by factors other than asymmetric mutation pressure.
  相似文献   

15.
Balanced pools of deoxyribonucleoside triphosphates (dNTPs) are essential for DNA replication to occur with maximum fidelity. Conditions that create biased dNTP pools stimulate mutagenesis, as well as other phenomena, such as recombination or cell death. In this essay we consider the effective dNTP concentrations at replication sites under normal conditions, and we ask how maintenance of these levels contributes toward the natural fidelity of DNA replication. We focus upon two questions. (1) In prokaryotic systems, evidence suggests that replication is driven by small, localized, rapidly replenished dNTP pools that do not equilibrate with the bulk dNTP pools in the cell. Since these pools cannot be analyzed directly, what indirect approaches can illuminate the nature of these replication-active pools? (2) In eukaryotic cells, the normal dNTP pools are highly asymmetric, with dGTP being the least abundant nucleotide. Moreover, the composition of the dNTP pools changes as cells progress through the cell cycle. To what extent might these natural asymmetries contribute toward a recently described phenomenon, the differential rate of evolution of different genes in the same genome?  相似文献   

16.
Mammalian gene evolution: Nucleotide sequence divergence between mouse and rat   总被引:16,自引:0,他引:16  
As a paradigm of mammalian gene evolution, the nature and extent of DNA sequence divergence between homologous protein-coding genes from mouse and rat have been investigated. The data set examined includes 363 genes totalling 411 kilobases, making this by far the largest comparison conducted between a single pair of species. Mouse and rat genes are on average 93.4% identical in nucleotide sequence and 93.9% identical in amino acid sequence. Individual genes vary substantially in the extent of nonsynonymous nucleotide substitution, as expected from protein evolution studies; here the variation is characterized. The extent of synonymous (or silent) substitution also varies considerably among genes, though the coefficient of variation is about four times smaller than for nonsynonymous substitutions. A small number of genes mapped to the X-chromosome have a slower rate of molecular evolution than average, as predicted if molecular evolution is male-driven. Base composition at silent sites varies from 33% to 95% G + C in different genes; mouse and rat homologues differ on average by only 1.7% in silent-site G + C, but it is shown that this is not necessarily due to any selective constraint on their base composition. Synonymous substitution rates and silent site base composition appear to be related (genes at intermediate G + C have on average higher rates), but the relationship is not as strong as in our earlier analyses. Rates of synonymous and nonsynonymous substitution are correlated, apparently because of an excess of substitutions involving adjacent pairs of nucleotides. Several factors suggest that synonymous codon usage in rodent genes is not subject to selection.  相似文献   

17.
Pulse-chase radioactive labeling experiments using thymidine kinase-plus mouse LA9 cells have shown that the 7 S mitochondrial DNA initiation sequence of mitochondrial DNA is synthesized and turned over at a faster rate than previously determined. These pulse-chase labeling experiments have also determined that the replication time of mouse LA9 cell mitochondrial DNA is one hour. The halflife of pulse-labeled 7 S mitochondrial DNA initiation sequences is approximately 70 minutes. This turnover is so rapid that at least 95% of the mitochondrial DNA initiation sequences synthesized are lost to turnover without acting as primers for expansion synthesis of the mitochondrial DNA heavy strand. The mechanism of 7 S mitochondrial DNA turnover does not lead to significant accumulation of free 7 S mitochondrial DNA single-strands within mitochondria. Resynthesis of the 7 S mitochondrial DNA initiation sequence is sufficiently rapid that the majority of mitochondrial DNA molecules are maintained as displacement loop molecules. Approximately 20% of all nucleotides polymerized into mitochondrial DNA are incorporated into the 7 S initiation sequences. The size of newly synthesized 7 S mitochondrial DNA strands varies from about 500 to 620 nucleotides. Several size classes are resolved by polyacrylamide/urea gel electrophoresis and each class has approximately the same turnover rate.Mouse LD cells maintain their mitochondrial DNA genomes as unicircular, head-to-tail dimers. Since a significant fraction of these unicircular dimers contain only one displacement loop, the size of the initiation sequence in such molecules should be twice as long if synthesis of the strand is limited by the free energy of superhelix formation. An identical array of size classes of 7 S strands is obtained from this cell line as compared to mouse LA9 cells. This indicates that the extent of 7 S mitochondrial DNA synthesis is most likely determined by a nucleotide sequence specific event.  相似文献   

18.
Eukaryotic DNA topoisomerase I introduces transient single-stranded breaks on double-stranded DNA and spontaneously breaks down single-stranded DNA. The cleavage sites on both single and double-stranded SV40 DNA have been determined by DNA sequencing. Consistent with other reports, the eukaryotic enzymes, in contrast to prokaryotic type I topoisomerases, links to the 3'-end of the cleaved DNA and generates a free 5'-hydroxyl end on the other half of the broken DNA strand. Both human and calf enzymes cleave SV40 DNA at the identical and specific sites. From 827 nucleotides sequenced, 68 cleavage sites were mapped. The majority of the cleavage sites were present on both double and single-stranded DNA at exactly the same nucleotide positions, suggesting that the DNA sequence is essential for enzyme recognition. By analyzing all the cleavage sequences, certain nucleotides are found to be less favored at the cleavage sites. There is a high probability to exclude G from positions -4, -2, -1 and +1, T from position -3, and A from position -1. These five positions (-4 to +1 oriented in the 5' to 3' direction) around the cleavage sites must interact intimately with topo I and thus are essential for enzyme recognition. One topo I cleavage site which shows atypical cleavage sequence maps in the middle of a palindromic sequence near the origin of SV40 DNA replication. It occurs only on single-stranded SV40 DNA, suggesting that the DNA hairpin can alter the cleavage specificity. The strongest cleavage site maps near the origin of SV40 DNA replication at nucleotide 31-32 and has a pentanucleotide sequence of 5'-TGACT-3'.  相似文献   

19.
Directional mutation pressure,selective constraints,and genetic equilibria   总被引:8,自引:0,他引:8  
Summary Rates of substitution mutations in two directions, v [from an A-T or T-A nucleotide pair (AT-pair) to a G-C or C-G nucleotide pair (GC-pair)] and u [from a GC-pair to an AT-pair], are usually not the same. The net effect, v/(u + v), has previously been defined as directional mutation pressure ( d ), which explains the wide interspecific variation and narrow intragenomic heterogeneity of DNA G+C content in bacteria. In this article, first, a theory of the evolution of DNA G+C content is presented that is based on the equilibrium among three components: directional mutation pressure, DNA G+C content, and selective constraints. According to this theory, consideration of both u and v as well as selective constraints is essential to explain the molecular evolution of the DNA base composition and sequence. Second, the theory of directional mutation pressure is applied to the analysis of the wide intragenomic heterogeneity of DNA G+C content in multicellular eukaryotes. The theory explains the extensive intragenomic heterogeneity of G+C content of higher eukaryotes primarily as the result of the intragenomic differences of directional mutation pressure and selective constraints rather than the result of positive selections for functional advantages of the DNA G+C content itself.  相似文献   

20.
We previously reported the partial characterization of two cottontail rabbit papillomavirus (CRPV) subtypes with strikingly divergent E6 and E7 oncoproteins. We report now the complete nucleotide sequences of these subtypes, referred to as CRPVa4 (7,868 nucleotides) and CRPVb (7,867 nucleotides). The CRPVa4 and CRPVb genomes differed at 238 (3%) nucleotide positions, whereas CRPVa4 and the prototype CRPV differed by only 5 nucleotides. The most variable region (7% nucleotide divergence) included the long regulatory region (LRR) and the E6 and E7 genes. A mutation in the stop codon resulted in an 8-amino-acid-longer CRPVb E4 protein, and a nucleotide deletion reduced the coding capacity of the E5 gene from 101 to 25 amino acids. In domestic rabbits homozygous for a specific haplotype of the DRA and DQA genes of the major histocompatibility complex, warts induced by CRPVb DNA or a chimeric genome containing the CRPVb LRR/E6/E7 region showed an early regression, whereas warts induced by CRPVa4 or a chimeric genome containing the CRPVa4 LRR/E6/E7 region persisted and evolved into carcinomas. In contrast, most CRPVa, CRPVb, and chimeric CRPV DNA-induced warts showed no early regression in rabbits homozygous for another DRA-DQA haplotype. Little, if any, viral replication is usually observed in domestic rabbit warts. When warts induced by CRPVa and CRPVb virions and DNA were compared, the number of cells positive for viral DNA or capsid antigens was found to be greater by 1 order of magnitude for specimens induced by CRPVb. Thus, both sequence variation in the LRR/E6/E7 region and the genetic constitution of the host influence the expression of the oncogenic potential of CRPV. Furthermore, intratype variation may overcome to some extent the host restriction of CRPV replication in domestic rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号