首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunofluorescent staining of mitotic centrosomes and spindles by anti-p53 antibodies was observed in the embryonic chick epiblast by epifluorescence microscopy and in three human cancer cell lines, an SV40-immortalized cell line, and a normal human fibroblast culture by confocal microscopy. In the chick epiblast, the centrosomes stained from early prophase through to the formation of the G1 nuclei and the spindle fibers stained from prophase through to telophase. In the human cells, the staining was observed from late prophase to telophase. The epiblast was stained by the anti-p53 antibodies DO-1, Ab-6, and Bp53-12. The human cells were also stained by these antibodies as well as by other anti-p53 antibodies. Preabsorption of DO-1 and Bp53-12 with purified tubulin did not diminish the immunostaining, showing that the antibodies were not reacting with tubulin in the mitotic centrosomes and spindles. The immunostaining in the chick epiblast was very clearly localized to the mitotic centrosomes and spindles, revealing a cytoplasmic location for p53 during mitosis and accounting for earlier reports of an association between p53, tubulin, and centrosomes. The localization of p53 to the spindle supports an involvement of p53 in spindle function.  相似文献   

2.
The mitotic, micronuclear division of the heterotrichous genus Blepharisma has been studied by electron microscopy. Dividing ciliates were selected from clone-derived mass cultures and fixed for electron microscopy by exposure to the vapor of 2% osmium tetroxide; individual Blepharisma were encapsulated and sectioned. Distinctive features of the mitosis are the presence of an intact nuclear envelope during the entire process and the absence of centrioles at the polar ends of the micronuclear figures. Spindle microtubules (SMT) first appear in advance of chromosome alignment, become more numerous and precisely aligned by metaphase, lengthen greatly in anaphase, and persist through telophase. Distinct chromosomal and continuous SMT are present. At telophase, daughter nuclei are separated by a spindle elongation of more than 40 µ, and a new nuclear envelope is formed in close apposition to the chromatin mass of each daughter nucleus and excludes the great amount of spindle material formed during division. The original nuclear envelope which has remained structurally intact then becomes discontinuous and releases the newly formed nucleus into the cytoplasm. The micronuclear envelope seems to lack the conspicuous pores that are typical of nuclear envelopes. The morphology, size, formation, and function of SMT and the nature of micronuclear division are discussed.  相似文献   

3.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

4.
Mitosis in vegetative cells of the siphonocladalean algaBoergesenia forbesii (Harvey) Feldmann was investigated mainly by electron microscopy. The mitotic spindle was centric and closed. The interphase nucleus contained a spherical nucleolus. The nucleolus was slightly dispersed at prophase, but nucleolar materials remained during nearly all stages of mitosis. Kinetochores were evident on chromosomes. The polar regions of nuclear envelope had no fenestrae during mitosis. Anaphase separation of the chromosomes was asynchronous. Elongation of interzonal spindle at telophase separated the two daughter nuclei widely. The ultrastructural features of mitosis inB. forbesii revealed by the present investigation are compared with those of other siphonous and siphonocladous algae in the Ulvophyceae.  相似文献   

5.
During open mitosis several nuclear pore complex (NPC) proteins have mitotic specific localizations and functions. We find that the Aspergillus nidulans Mlp1 NPC protein has previously unrealized mitotic roles involving spatial regulation of spindle assembly checkpoint (SAC) proteins. In interphase, An-Mlp1 tethers the An-Mad1 and An-Mad2 SAC proteins to NPCs. During a normal mitosis, An-Mlp1, An-Mad1, and An-Mad2 localize similarly on, and around, kinetochores until telophase when they transiently localize near the spindle but not at kinetochores. During SAC activation, An-Mlp1 remains associated with kinetochores in a manner similar to An-Mad1 and An-Mad2. Although An-Mlp1 is not required for An-Mad1 kinetochore localization during early mitosis, it is essential to maintain An-Mad1 in the extended region around kinetochores in early mitosis and near the spindle in telophase. Our data are consistent with An-Mlp1 being part of a mitotic spindle matrix similar to its Drosophila orthologue and demonstrate that this matrix localizes SAC proteins. By maintaining SAC proteins near the mitotic apparatus, An-Mlp1 may help monitor mitotic progression and coordinate efficient mitotic exit. Consistent with this possibility, An-Mad1 and An-Mlp1 redistribute from the telophase matrix and associate with segregated kinetochores when mitotic exit is prevented by expression of nondegradable cyclin B.  相似文献   

6.
Synchronously dividing binuclear cells were induced in root tips ofTriticum turgidum by caffeine treatment. Spindle and other microtubular configurations of such cells were studied using tubulin immunofluorescence and electron microscopy. The binuclear cells developed one, two or three preprophase microtubule bands longitudinally, transversely or rarely in a cross configuration. During the mitotic entry binuclear cells formed prophase spindles separately around each nucleus. When the nuclei were located fairly apart, their spindle structures developed independently throughout all mitotic phases. But when the nuclei were located closely together their metaphase and anaphase spindles shared a common polar region. However, the two spindles in such cells retained their functional autonomy. They display structurally independent minipoles in the common polar region. After anaphase the neighbouring nonsister chromosome groups of nuclei divided by a common polar region come to lie close together and in telophase, become enclosed by a common nuclear envelope. During cytokinesis of binuclear cells cell plates were formed only between sister nuclei. These cell plates may develop normally or may curve or branch giving rise to aberrant daughter cell walls. The peculiar mode of spindle and spindle polar region organization of binuclear cells and determination of the division plane in them are discussed.  相似文献   

7.
The distribution of ubiquitin protein in meristematic mesophyll cells of barley (Hordeum vulgare L.) leaves was investigated by using immunofluorescence microscopy. Simultaneous observation of nuclei was achieved byDAPI (4 6-diamidino-2-phenylindol-dihydrochloride) staining. A strong correlation between the chromatin organisation and the ubiquitin distribution could be observed. Interphase nuclei revealed an intense content of ubiquitin and accumulation of ubiquitin at the nuclear envelope, whereas condensed chromosomes of dividing cells excluded any ubiquitin appearance. During cell division, the aggregation of ubiquitin protein was detected in the area of the mitotic spindle in anaphase as well as the area of the cell plate in the late telophase.  相似文献   

8.
Cytokinesis in apical cells of actively growing cultures of Cephaleuros parasiticus Karsten sporangiate thalli was examined with transmission electron microscopy. A massive, interzonal cytokinetic microtubule spindle is anchored at its poles to the medial surfaces of the daughter nuclei at telophase. Later, the daughter nuclei are widely separated and no longer associated with the interzonal spindle; however, the spindle retains its shape and becomes a distinct phragmoplast with an array of vesicles, presumably derived from dictyosomes, aligned in the division plane. Fusion of the vesicles gives rise to a thin cell plate. Some bundles of microtubules in the spindle appear to mark the sites of plasmodesmata formation, but no endoptasmic reticulum is directly involved in plasmodesmata formation. No infurrowing or phycoplast array of microtubules is involved in the cytokinesis. The relationship, if any. between the metaphase-anaphase mitotic microtubule system and the interzonal cytokinetic spindle has not been determined. Cephaleuros parasiticus isone of only four green algae now known to contain a higher plant-like phragmoplast and cytokinetic process. The observations reported can be interpreted as very strong evidence for a phylogenetic affinity between the Trentepohliaceae and the Charophyceae, but consideration of ulvophycean features of the Trentepohliaceae such as motile cell ultrastructure and life histories precludes unequivocal assignment of the family to either the Charophyceae or Ulvophyceae.  相似文献   

9.
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.  相似文献   

10.
The molecular signals that determine the position and timing of the cleavage furrow during mammalian cell cytokinesis are presently unknown. We have studied in detail the effect of dihydrocytochalasin B (DCB), a drug that interferes with actin assembly, on specific late mitotic events in synchronous HeLa cells. When cleavage furrow formation is blocked at 10 microM DCB, cells return to interphase by the criteria of reformation of nuclei with lamin borders, degradation of the cyclin B component of p34cdc2 kinase, and loss of mitosis specific MPM-2 antigens. However, the machinery for cell cleavage is retained for up to one hour into G1 when cleavage cannot proceed. The components retained consist prominently of a "postmitotic" spindle and a telophase disc, a structure templated by the mitotic spindle in anaphase that may determine the position and timing of the cleavage furrow. Upon release from DCB block, G1 cells proceed through a rapid and synchronous cleavage. We conclude that the mitotic spindle is not inevitably destroyed at the end of mitosis, but persists as an integral structure with the telophase disc in the absence of cleavage. We also conclude that cell cleavage can occur in G1, and is therefore an event metabolically independent of mitosis. The retained telophase disc may indeed signal the position of furrow formation, as G1 cleavage occurs only in the position where the retained disc underlies the cell cortex. The protocol we describe should now enable development of a model system for the study of mammalian cell cleavage as a synchronous event independent of mitosis.  相似文献   

11.
To verify non-random positioning and to define the stability of the mitotic spindle orientation in neuroepithelial cells of mouse foetuses, computer - assisted morphometric analysis at the light microscopy level was performed. It was confirmed that the mitotic spindle axis is positioned non-randomly in relation to the cell polarity axis and could be displaced only within a narrow range. This orientation was found to be attained at metaphase and it does not change until telophase is completed. However, in relation to the long axis of the neural tube the mitotic spindle axis was found to be positioned randomly. In the light of these findings centrosome movement and positioning are discussed.  相似文献   

12.
A transmission electron microscopy study of dividing cells of Ulothrix verrucosa Lokhorst has provided clear evidence that this species differs in many respects from other Ulothrix Kützing species. These differences include the presence of a microtubular sheath around the prophase nucleus, the complete disintegration of the nuclear envelope coinciding with the proliferation of extranuclear microtubules into the prometaphase nucleus and the intrusion of vacuoles into the interzonal spindle region in between the widely separated telophase nuclei. This necessitates the transfer of Ulothrix verrucosa to the charophycean genus Klebsormidium Silva, Mattox and Blackwell. The new combination Klebsormidium mucosum is proposed. On account of its mitotic pattern, this species can be placed in the (charophycean) evolutionary line towards the higher plants. However, because of its cytokinesis (annular centripetal ingrowth of the plasmalemma) this species probably should be considered as a blind offshoot of this line. It is emphasized that furrowing green algae with a persistent interzonal spindle at telophase (including the presently studied alga) often show an ill-defined cytokinetic microtubular system.  相似文献   

13.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   

14.
The Drosophila mutation, quartet, affects development at points in the life cycle that require intense mitotic activity. Examination of embryos affected by the maternal effect of quartet has revealed defects that can be attributed to incomplete chromosome separation at mitosis. These defects include uneven spacing of nuclei, strands of DNA creating bridges between nuclei, and abnormal amounts of DNA per nucleus. Nuclei in quartet-affected embryos also have a greater-than-normal number of centrosomes. Immunofluorescent examination of the spindles in quartet-affected embryos has revealed tripolar spindles and adjacent spindles that share a common spindle pole. Finally, chromosome separation distance was measured in anaphase and telophase spindles in quartet-affected embryos and found to be blocked in anaphase. Examination of mitotic figures in quartet larvae revealed a reduced mitotic index and an elevated frequency of abnormal mitotic figures. quartet could encode a function necessary for the disengagement of chromosomes in mitosis, for kinetochore function or for function of a spindle motor. Mutations in quartet prevent the post-translational modification of three abundant proteins. These proteins may be involved in chromosome separation in mitosis.  相似文献   

15.
Dividing nuclei from the giant ameba Pelomyxa carolinensis were fixed in osmium tetroxide solutions buffered with veronal acetate to pH 8.0. If divalent cations (0.002 M calcium, magnesium, or strontium as chlorides) were added to the fixation solution, fibrils that are 14 mµ in diameter and have a dense cortex are observed in the spindle. If the divalent ions were omitted, oriented particles of smaller size are present and fibrils are not obvious. The stages of mitosis were observed and spindle components compared. Fibrils fixed in the presence of calcium ions are not so well defined in early metaphase as later, but otherwise have the same diameter in the late metaphase, anaphase, and early telophase. Fibrils are surrounded by clouds of fine material except in early telophase, when they are formed into tight bundles lying in the cytoplasm unattached to nuclei. Metaphase and anaphase fibrils fixed without calcium ions are less well defined and are not observably different from each other. The observations are consistent with the concept that spindle fibrils are composed of polymerized, oriented protein molecules that are in equilibrium with and bathed in non-oriented molecules of the same protein. Partially formed spindle fibrils and ribosome-like particles were observed in the mixoplasm when the nuclear envelope had only small discontinuities. Remnants of the envelope are visible throughout division and are probably incorporated into the new envelope in the telophase. Ribosome-like particles are numerous in the metaphase and anaphase spindle but are not seen in the telophase nucleus, once the envelope is reestablished, or in the interphase nucleus.  相似文献   

16.
Centrin, a 20 kDa calmodulin-like protein, is located in various basal body-associated fibers in protists. We used indirect immunofluorescence of isolated cytoskeletons or methanol-fixed cells to analyze the distribution of centrin during mitosis of the biflagellate green alga Dunaliella bioculata (Butcher). The distance between the nucleus and the basal apparatus decreased in late interphase, presumably caused by the contraction of the two centrin-containing nucleus–basal body connectors (NBBCs). During prophase, centrin accumulated on the new basal bodies as shown by postembedding immunogold labeling of serial thin sections. The new basal bodies were in close contact with plaque-like structures on the nuclear envelope. In mitotic cells, basal body pairs were separated and positioned at a considerable distance from the poles of the mitotic spindle. At this stage, we observed four separated centrin dots, two associated with the pairs of basal bodies and two located at the spindle poles as shown by double immunofluorescence, including anti-tubulin staining. The latter signals corresponded to an accumulation of centrin between the plasma membrane and the nuclei, indicating that centrin could be involved in mitotic movements of the nuclei. In telophase, centrin was observed along the nuclear surface and one new NBBC developed in each cell half. Our results demonstrate that centrin is present at the acentriolar spindle poles of Dunaliella independently from its localization in the basal apparatus.  相似文献   

17.
Masuda K  Haruyama S  Fujino K 《Planta》1999,210(1):165-167
The architecture of the nuclei of higher plants includes a structure similar to the nuclear lamina of vertebrates. Changes in this structure were monitored during mitosis in carrot (Daucus carota L.) and celery (Apium graveolens L.) cells by immunofluorescence microscopy using an antibody that recognized the nuclear-matrix protein NMCP1. This protein has been shown to be localized exclusively at the periphery of the nucleus (K. Masuda et al. 1997, Exp Cell Res 232: 173–187). Immunofluorescence was recognized throughout cells in mitotic metaphase, although it was distributed predominantly in the mitotic spindle zone. At late anaphase or telophase, the immunofluorescence was localized around each set of daughter chromosomes. Immunofluorescence in newly formed daughter nuclei was restricted to the periphery of nuclei. This behavior was very similar to that of the nuclear lamina of vertebrates, suggesting that the structure located between the nuclear envelope and the chromosomes in plants disassembles and assembles in parallel with the disintegration and re-formation of the nuclear envelope. Received: 30 April 1999 / Accepted: 26 June 1999  相似文献   

18.
Walsh CJ 《PloS one》2012,7(4):e34763
Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.  相似文献   

19.
The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events.  相似文献   

20.
Summary Nuclear and microtubular cycles were studied in large heterophasic multinuclear cells induced in root tips ofTriticum turgidum by caffeine treatment. Multinuclear cells and cells with polyploid nuclei exhibited various configurations of multiple and complex preprophase microtubule (Mt) bands (PPBs), including helical ones. The developmental stages of PPBs in some heterophasic cells did not comply with the cell cycle stages of the associated nuclei, a fact indicating that these events are not directly controlled by the associated nuclei. The heterophasic cells exhibited asynchronous nuclei at different stages of mitosis. In cells displaying prophase and interphase nuclei, the prophase spindle was either absent or developed around both of them or developed around the prophase nuclei earlier than around the interphase ones. During prometaphase-metaphase of the advanced nuclei the lagging interphase nuclei were induced to form prematurely condensed chromosomes (PCCs) along with spindle formation around them. These observations suggest that the mitotic transition in heterophasic cells is delayed but is ultimately achieved due to the effect of the advanced nuclei, which induces a premature mitotic entry of the lagging nuclei. Although kinetochore Mt bundles were found associated with PCCs, their metaphase and anaphase spindles were abnormal resulting in abnormal or abortive anaphases. In some heterophasic cells, metaphase-anaphase transition did not take place simultaneously in different chromosome groups, signifying that the cells do not exit from the mitotic state after anaphase initiation of the advanced nuclei. Asynchronous pace of mitosis of different chromosome groups was also observed during anaphase and telophase. Implications of these observations in understanding plant cell cycle regulation are discussed.Abbreviations cdk cyclin dependent kinase - Mt microtubule - PCC prematurely condensed chromosome - PPB preprophase band  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号