首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serotonin modulates brain physiology and behavior and has major roles in brain diseases involving abnormal mood and cognition. Enhancing brain serotonin has been found to regulate glycogen synthase Kinase-3 (GSK3), but the signaling mechanism and functional significance of this regulation remain to be determined. In this study, we tested the signaling mechanism mediating 5-HT1A receptor-regulated GSK3 in the hippocampus. Using mutant GSK3 knock-in mice, we also tested the role of GSK3 in the behavioral effects of 5-HT1A receptors and the serotonin reuptake inhibitor fluoxetine. The results showed that activation of 5-HT1A receptors by 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) increased phosphorylation of the N-terminal serine of both GSK3α and GSK3β in several areas of the hippocampus. The effect of 8-OH-DPAT was accompanied by an increase in the active phosphorylation of Akt, and was blocked by LY294002, an inhibitor of phosphoinositide 3-kinases (PI3K). Phosphorylation of GSK3β, but not GSK3α, was necessary for 5-HT1A receptors to suppress the hippocampus-associated contextual fear learning. Furthermore, acute fluoxetine treatment up-regulated both phospho-Ser21-GSK3α and phospho-Ser9-GSK3β in the hippocampus. Blocking phosphorylation of GSK3α and GSK3β diminished the anti-immobility effect of fluoxetine treatment in the forced swim test, wherein the effect of GSK3β was more prominent. These results together suggest that PI3K/Akt is a signaling mechanism mediating the GSK3-regulating effect of 5-HT1A receptors in the hippocampus, and regulation of GSK3 is an important intermediate signaling process in the behavioral functions of 5-HT1A receptors and fluoxetine.  相似文献   

2.
Glycogen synthase kinase-3 (GSK-3) is a key component of several signaling pathways including those regulated by Wnt and insulin ligands. Specificity in GSK-3 signaling is thought to involve interactions with scaffold proteins that localize GSK-3 regulators and substrates. This report shows that GSK-3 forms a low affinity homodimer that is disrupted by binding to Axin and Frat. Based on the crystal structure of GSK-3, we have used surface-scanning mutagenesis to identify residues that differentially affect GSK-3 interactions. Mutations that disrupt Frat and Axin cluster at the dimer interface explaining their effect on homodimer formation. Loss of the Axin binding site blocks the ability of dominant negative GSK-3 to cause axis duplication in Xenopus embryos. The Axin binding site is conserved within all GSK-3 proteins, and its loss affects both cell motility and gene expression in the nonmetazoan, Dictyostelium. Surprisingly, we find no genetic interaction between a non-Axin-binding GSK-3 mutant and T-cell factor activity, arguing that Axin interactions alone cannot explain the regulation of T-cell factor-mediated gene expression.  相似文献   

3.
4.
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates.  相似文献   

5.
Extracellular cAMP stimulates the rapid tyrosine phosphorylation and nuclear translocation of the DICTYOSTELIUM: STAT protein Dd-STATa. Here we show that it also induces serine phosphorylation by GskA, a homologue of glycogen synthase kinase-3 (GSK-3). Tyrosine phosphorylation occurs within 10 s of stimulation, whereas serine phosphorylation takes 5 min, matching the kinetics observed for the cAMP regulation of GskA. Phosphorylation by GskA enhances nuclear export of Dd-STATa. The phosphorylated region, however, is not itself a nuclear export signal and we identify a region elsewhere in the protein that mediates nuclear export. These results suggest a biphasic regulation of Dd-STATa, in which extracellular cAMP initially directs nuclear import and then, via GskA, promotes its subsequent export. It also raises the possibility of an analogous regulation of STAT nuclear export in higher eukaryotes.  相似文献   

6.
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival.  相似文献   

7.
8.
Lithium inhibits glycogen synthase kinase-3 by competition for magnesium   总被引:16,自引:0,他引:16  
The mechanism by which lithium (Li(+)) inhibits the protein kinase glycogen synthase kinase-3 (GSK-3) is unknown. Here, we demonstrate that Li(+) is a competitive inhibitor of GSK-3 with respect to magnesium (Mg(2+)), but not to substrate or ATP. This mode of inhibition is conserved between mammalian and Dictyostelium GSK-3 isoforms, and is not experienced with other group I metal ions. As a consequence, the potency of Li(+) inhibition is dependent on Mg(2+) concentration. We also found that GSK-3 is sensitive to chelation of free Mg(2+) by ATP and is progressively inhibited when ATP concentrations exceed that of Mg(2+). Given the cellular concentrations of ATP and Mg(2+), our results indicate that Li(+) will have a greater effect on GSK-3 activity in vivo than expected from in vitro studies and this may be a factor relevant to its use in the treatment of depression.  相似文献   

9.
10.
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.  相似文献   

11.
12.
13.
Glycogen synthase kinase-3 (ATP:protein phosphotransferase, EC 2.7.1.37) phosphorylated K-casein 20-fold more rapidly than beta-casein, while alpha S1-casein was not a substrate. This distinguished it from casein kinase-I and casein kinase-II, which phosphorylate the beta-casein variant preferentially. Glycogen synthase kinase-3 phosphorylated a serine residue(s) in the C-terminal cyanogen bromide fragment on K-casein. In contrast, cyclic AMP-dependent protein kinase phosphorylated the N-terminal fragment, and phosphorylase kinase the N-terminal and intermediate cyanogen bromide fragments. The results emphasize the potential value of casein phosphorylation as a means of classifying protein kinases.  相似文献   

14.
The long-term goal of our work is to understand biochemical mechanisms underlying sperm motility and fertility. In a recent study we showed that tyrosine phosphorylation of a 55-kDa protein varied in direct proportion to motility. Tyrosine phosphorylation of the protein was low in immotile compared to motile epididymal sperm. Inhibition or stimulation of motility by high calcium levels or cAMP, respectively, results in a corresponding decrease or increase in tyrosine phosphorylation of the 55-kDa protein. Here we report purification and identification of this motility-associated protein. Soluble extracts from bovine caudal epididymal sperm were subjected to DEAE-cellulose, Affi-Gel blue, and cellulose phosphate chromatography. Tyrosine phosphate immunoreactive fractions contained glycogen synthase kinase-3 (GSK-3) activity, suggesting a possible correspondence between these proteins. This suggestion was verified by Western blot analyses following one-dimensional and two-dimensional gel electrophoresis of the purified protein using monoclonal and affinity-purified polyclonal antibodies against the catalytic amino-terminus and carboxy-terminus regions of GSK-3. Further confirmation of the identity of these proteins came from Western blot analysis using antibodies specific to the tyrosine phosphorylated GSK-3. Using this antibody, we also showed that GSK-3 tyrosine phosphorylation was high in motile compared to immotile sperm. Immunocytochemistry revealed that GSK-3 is present in the flagellum and the anterior portion of the sperm head. These data suggest that GSK-3, regulated by phosphorylation, could be a key element underlying motility initiation in the epididymis and regulation of mature sperm function.  相似文献   

15.
16.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase  相似文献   

17.
Valproic acid (VPA) is a potent broad-spectrum anti-epileptic with demonstrated efficacy in the treatment of bipolar affective disorder. It has previously been demonstrated that both VPA and lithium increase activator protein-1 (AP-1) DNA binding activity, but the mechanisms underlying these effects have not been elucidated. However, it is known that phosphorylation of c-jun by glycogen synthase kinase (GSK)-3beta inhibits AP-1 DNA binding activity, and lithium has recently been demonstrated to inhibit GSK-3beta. These results suggest that lithium may increase AP-1 DNA binding activity by inhibiting GSK-3beta. In the present study, we sought to determine if VPA, like lithium, regulates GSK-3. We have found that VPA concentration-dependently inhibits both GSK-3alpha and -3beta, with significant effects observed at concentrations of VPA similar to those attained clinically. Incubation of intact human neuroblastoma SH-SY5Y cells with VPA results in an increase in the subsequent in vitro recombinant GSK-3beta-mediated 32P incorporation into two putative GSK-3 substrates (approximately 85 and 200 kDa), compatible with inhibition of endogenous GSK-3beta by VPA. Consistent with GSK-3beta inhibition, incubation of SH-SY5Y cells with VPA results in a significant time-dependent increase in both cytosolic and nuclear beta-catenin levels. GSK-3beta plays a critical role in the CNS by regulating various cytoskeletal processes as well as long-term nuclear events and is a common target for both lithium and VPA; inhibition of GSK-3beta in the CNS may thus underlie some of the long-term therapeutic effects of mood-stabilizing agents.  相似文献   

18.
19.
The proglucagon gene (glu) encodes glucagon, expressed in pancreatic islets, and the insulinotropic hormone GLP-1, expressed in the intestines. These two hormones exert critical and opposite effects on blood glucose homeostasis. An intriguing question that remains to be answered is whether and how glu gene expression is regulated in a cell type-specific manner. We reported previously that the glu gene promoter in gut endocrine cell lines was stimulated by beta-catenin, the major effector of the Wnt signaling pathway, whereas glu mRNA expression and GLP-1 synthesis were activated via inhibition of glycogen synthase kinase-3beta, the major negative modulator of the Wnt pathway (Ni, Z., Anini, Y., Fang, X., Mills, G. B., Brubaker, P. L., & Jin, T. (2003) J. Biol. Chem. 278, 1380-1387). We now show that beta-catenin and the glycogen synthase kinase-3beta inhibitor lithium do not activate glu mRNA or glu promoter expression in pancreatic cell lines. In the intestinal GLUTag cell line, but not in the pancreatic InR1-G9 cell line, the glu promoter G2 enhancer-element was activated by lithium treatment via a TCF-binding motif. TCF-4 is abundantly expressed in the gut but not in pancreatic islets. Furthermore, both TCF-4 and beta-catenin bind to the glu gene promoter, as detected by chromatin immunoprecipitation. Finally, stable introduction of dominant-negative TCF-4 into the GLUTag cell line repressed basal glu mRNA expression and abolished the effect of lithium on glu mRNA expression and GLP-1 synthesis. We have therefore identified a unique mechanism that regulates glu expression in gut endocrine cells only. Tissue-specific expression of TCF factors thus may play a role in the diversity of the Wnt pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号