首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 148 毫秒
1.
纤维素多孔微载体的制备及其用于动物细胞培养   总被引:7,自引:0,他引:7  
将纤维素铜氨溶液喷洒至-40℃的硅油:正己烷=1:4的冷冻液中形成含冰晶的微球,用-30℃、40%的H2SO4再生纤维素,并用EDAE盐酸盐修饰其表面,制成适合动物细胞培养的纤维素多孔微载体。利用该微载体培养能分泌尿激酶原(Pro-UK)的重组CHO细胞,在100mL搅拌瓶中换液培养25d,细胞最高密度为6.3×106/mL,尿激酶原最高活性为2325IU/mL,共获28.7mg产品。之后转入1000mL搅拌瓶中培养,可观察到细胞可从种子微载体中自动转移到新微载体中生长繁殖直至所有微载体中都长有细胞。在25d二级培养中,细胞最高密度为7.3×106/mL,尿激酶原最高活性为3108IU/mL,共获含353mg尿激酶原的上清13.7L。在培养后期换用无血清培养基培养,细胞生长及蛋白表达水平正常。  相似文献   

2.
转瓶培养与生物反应器微载体培养乙脑病毒的比较   总被引:1,自引:0,他引:1  
分别用15L转瓶与15L生物反应器微载体(2.5g/L CytodexⅢ)系统培养Vero细胞并接种乙型脑炎病毒(简称乙脑病毒)。转瓶培养Vero细胞7~8d,细胞数最高能达到8×108;当单层细胞长至3.0~4.5×108时接种乙脑病毒,病毒滴度能达到6.5~6.98 lg PFU/ml,并能够连续收获4~5次;采用微载体系统培养Vero细胞,细胞密度最高能达到170×108;当单层细胞长至60~70×108时接种乙脑病毒,病毒滴度能达到7~7.5 lg PFU/ml,并能够连续收获13~15次。两种方式培养的乙脑病毒收获液分别经灭活、浓缩、柱层析纯化后制备Vero细胞乙脑纯化疫苗,各项检定指标均符合《中国药典》的相关要求。  相似文献   

3.
葡萄糖的添加对昆虫细胞Sf21悬浮生长的影响   总被引:2,自引:0,他引:2  
添加葡萄糖对昆虫细胞Sf21(Spodoptera frugiperda)悬浮生长的影响,发现补加糖量在lg/L时·能明显提高细胞生长的速度和最高密度,细胞最高密度由2.5×104/ml增加到4.9×106/ml; 朴加糖量在2g/L时,则有显著的抑制作用,即使增加接种密度.细胞生长的最高密度也只有2.1×106/ml。当采取流加葡萄糖方法来培养细胞时,则其生长的最大密度可提高到5.2×106/ml。  相似文献   

4.
杂交瘤细胞培养的优化   总被引:7,自引:0,他引:7  
根据杂交瘤细胞培养中单克隆抗体生产的动力学原理,采用灌注培养方式、添加醋酸钾和丰富营养物培养的途径,对反应器放大培养过程进行了优化。每天灌注l/2反应器工作体积,与分批培养相比,细胞密度由4 5×105/ml提高到l1×105/ml,单抗浓度由19mg/L提高到28mg/L;添加1g/L醋酸钾,细胞密度基本保持不变.但单抗浓度增加到38μg/ml;用丰富营养物培养后,细胞密度和单抗浓度分别进一步提高到42×105/ml和94mg/L。抗B型红细胞单抗的血凝滴度,由分批培养的1:32.最终提高到l:256  相似文献   

5.
利用5L生物反应器悬浮培养HEK-293 N3S细胞生产携带绿色荧光蛋白基因的重组腺病毒(recombinant adenovirus-green fluorescent protein,Ad-GFP),为规模化生产腺病毒基因药物建立一种稳定可行的生产工艺。复苏的种子细胞进行逐级放大最后接入5L搅拌式生物反应器中,采用含5%胎牛血清(FBS)的DMEM/F12培基灌流培养293 N3S细胞,当细胞密度达到(2~4)×106个/mL时感染Ad-GFP,48h后收获细胞,经两步氯化铯超速离心获得纯化的Ad-GFP。采用紫外分光光度计比色法和高压液相色谱法(HPLC)测定病毒颗粒数和纯度,采用组织培养半数感染剂量(TCID50)法检测腺病毒的感染滴度。连续培养10~12d,细胞密度可达到(2~4)×1066个/mL左右,纯化的Ad-GFP感染滴度和颗粒数分别为1.0×1011IU/mL和1.68×1012VP/mL,比活性为6.0%,A260A280比值为1.33,产品纯度达到99.2%。建立了5L生物反应器悬浮培养293 N3S细胞生产重组腺病毒Ad-GFP的生产工艺,对携带其他基因的重组腺病毒药物生产具有一定的指导意义。  相似文献   

6.
多孔微载体无血清培养rCHO细胞生产u-PA   总被引:5,自引:0,他引:5  
在30L搅拌式反应器中无血清培养分泌尿激酶型纤溶酶原激活剂(u-PA)的DNA重组CHO细胞,定期部分更换Cytopore多孔微载体,使生长在多孔微载体中的细胞不断更新繁殖,解决大规模细胞培养中的细胞凋亡问题。在91d连接换液培养过程中,细胞密度可维持在(1.3~2.6)×107/mL,活细胞比率维持在90%以上。在7.5L搅拌罐中培养细胞,利用外部周期性压力振荡刺激并结合载体更新技术,可减轻密度效应对细胞生长和表达的影响,在一定程度上提高细胞在高密度培养条件下的表达水平。在67d连续换液培养中,细胞最高密度为2.64×107/mL,活细胞比率维持在95%以上。与稳压操作相比,利用周期变压刺激技术可提高产量10%~20%,且可降低葡萄糖厌氧代谢生成乳酸的转化率,利用4步纯化工艺,从含u-PA约135g的2100 L上清中获得约80guPA(单链比例约为90%)。  相似文献   

7.
目的:比较Vero细胞在不同的商品化微载体中固定化培养的生长和代谢。方法:以Vero细胞在含1%新生牛血清的DMEM/F12中培养的细胞形态、活细胞密度和细胞活力为指标,考察Vero细胞在2D MicroHex、Biosilon、Cytodex1和Cytopore1微载体固定化培养的细胞生长;以葡萄糖比消耗速率(qglc)、乳酸比生产速率(qlac)、谷氨酰胺比消耗速率(qgln)和谷氨酸比生产速率(qglu)为指标,考察Vero细胞在不同微载体固定化培养的细胞代谢。结果:Vero细胞在2DMicroHex、Biosilon、Cytodex1和Cytopore1微载体固定化培养7d的活细胞密度分别为18.4×105cells/ml、21.9×105cells/ml、23.9×105cells/ml和16.2×105cells/ml,生长在Cytodex1表面的Vero细胞分布均匀、形态清晰;Vero细胞在不同微载体固定化培养的代谢指标基本相同。结论:Vero细胞在Cytodex1微载体固定化培养的效果优于其它商品化微载体,可作为目前用于病毒疫苗生产的Vero细胞固定化培养的首选微载体。  相似文献   

8.
人参培养细胞的单细胞克隆   总被引:2,自引:2,他引:2  
培养基组成成分能影响人参培养细胞单细胞克隆的植板率。Ms培养基中2,4-D和KT需要一个适合的浓度比才能有效地促进细胞克隆的形成,其最佳浓度组合是2,4-D1.5mg/L和KT O.5mg/L。适合人参细胞克隆形成的NH4N03浓度是400mg/L,CaCl2.2H2O浓度是750mg/L。向培养基中补加适量的琥珀酸、精氨酸和维生素等都能明显提高植板率。通过优化培养基的组成成分,细胞克隆的植板率可增加到2.34倍。悬浮培养两周左右的细胞平板培养最有利克隆形成,当细胞植板密度低于4×103个细胞/ml时,几乎没有克隆形成。  相似文献   

9.
微载体规模化培养细胞的研究   总被引:3,自引:0,他引:3  
通过实验探索使用微载体进行动物细胞规模化培养,以期达到建立规模化生产病毒疫苗的目的。实验研究了Vero细胞的生长曲线,以及对细胞生长过程中影响细胞生长的葡萄糖、氨含量两个主要因素的变化规律以及微载体浓度与细胞密度的关系。通过实验发现微载体规模化培养细胞易于操作,比传统转瓶培养的细胞密度高,封闭式的培养方式不但减少了污染几率,而且可以充分保证疫苗的质量。最终找出适宜疫苗培养的微载体使用浓度为2.5g/L,适宜的细胞接种浓度为:1~5×105cell/m l。  相似文献   

10.
搅拌式生物反应器中造血细胞的灌注培养   总被引:4,自引:0,他引:4  
为了消除造血细胞静态培养中存在的浓度梯度和搅拌悬浮培养时换液引起的波动,为造血细胞体外扩增提供更理想的培养环境和操作方式,利用自主开发的造血细胞重力沉降截留系统结合有溶氧和pH控制的生物反应器进行了脐血造血细胞的灌注培养。两次灌注培养中总细胞分别扩增11.5和18.6倍,扩增倍数最大时,CFU-Mix分别扩增23.2倍和20.4倍、 CFU-GM扩增13.9倍和21.5倍、BFU-E 扩增8.0倍和6.9倍、CD34+细胞扩增17.1倍和15.4倍。培养到12d时,第一次实验由267×106单个核细胞扩增得到1082×106个总细胞,6.31×106个CFU-GM,6.2×106个CFU-Mix和23×106个CD34+细胞;第二次实验由180×106单个核细胞扩增得到1.080×106个总细胞,4.65×106个CFU-GM,11.0×106个CFU-Mix和25.0×106个CD34+细胞,这达到了临床规模,由于控制了较低的溶氧和稳定的培养环境,细胞中干/祖细胞含量显著高于方瓶。但灌注培养到后期细胞密度达到较高后,细胞生长受到抑制,这应该是由细胞密度过高本身所引起。搅拌式反应器中进行灌注培养有利于造血干/祖细胞的进一步扩增,培养得到的细胞中干/祖细胞含量较高,培养规模达到了临床要求,但过高的细胞密度将对造血细胞的生长产生抑制。  相似文献   

11.
自制多孔微球高密度培养Vero细胞的初步研究   总被引:5,自引:0,他引:5  
多孔微球是动物细胞高密度培养的有效手段,它是1985年由Verax公司开创的,最初用于流化床生物反应器生产单克隆抗体,后来又出现了Percell和Siran系统系列多孔微球,并且使用的反应器种类和生产的产品都在增加,于是便成为一种新型的细胞培养手段而日益受到人们的重视。为此,我们在利用微载体进行Vero细胞高密度培养的同时,又对多孔微球的制备和培养工艺作了初步探索。  相似文献   

12.
A novel oscillating bioreactor, BelloCell, was successfully applied for the cultivation of Vero cells using serum-free medium, and the production of Japanese encephalitis virus. The BelloCell requires no air sparging, pumping, or agitation, and thus provides a low shear environment. Owing to its simple design, BelloCell is extremely easy to handle and operate. Using this BelloCell (500 ml culture), Vero cells reached a maximum number of 2.8 x 10(9) cells and the Japanese encephalitis virus yield reached 6.91 x 10(11) PFU, versus 9.0 x 10(8) cells and 2.98 x 10(11) PFU using a spinner flask (500 ml) with microcarriers. The cell yield and virus production using BelloCell were markedly higher than with microcarrier culture. The neutralizing capacity of the Japanese encephalitis virus produced using BelloCell was equal to that using a microcarrier system. Therefore, these benefits should enable BelloCell to be adopted as a simple system for high population density cell culture and virus production.  相似文献   

13.
For the large-scale operation of microcarrier culture to be successful, a technically feasible method for sequential inoculation is essential. Using human foreskin fibroblasts, FS-4, we have achieved this by detaching cells viably from microcarriers employing a selection pH trypsinization technique. Cells thus detached are able to reattach to microcarriers and grow normally after subsequent reinoculation into new cultures. However, after reinoculation cells attach to new microcarriers at a higher rate than to used microcarriers on which cells have previously grown. The effect of this differential cell attachment was analyzed and overcome by employing a low inoculum concentration. FS-4 cells could thus be serially propagated on microcarriers and subsequently used for beta-interferon production. This technique has also been applied to the cultivation of a monkey kidney cell line, Vero. We have also shown that Vero cells directly inoculated from a seed microcarrier culture could be used for virus production.  相似文献   

14.
Two strains of reovirus were propagated in Vero cells grown in stationary or microcarriers cultures. Vero cells grown as monolayers on T-flasks or in spinner cultures of Cytodex-1 or Cultispher-G microcarriers could be infected with reovirus serotype 1, strain Lang (T1L), and serotype 3, strain Dearing (T3D). A regime of intermittent low speed stirring at reduced culture volume was critical to ensure viral infection of cells in microcarrier cultures. The virus titre increased by 3 to 4 orders of magnitude over a culture period of 150 h. Titres of the T3D reovirus strain were higher (43%) compared to those of the T1L strain in all cultures. Titres were significantly higher in T-flask and Cytodex-1 microcarrier cultures compared to Cultispher-G cultures with respect to either reovirus type. The viral productivity in the microcarrier cultures was dependent upon the multiplicity of infection (MOI) and the cell/bead ratio at the point of infection. A combination of high MOI (5 pfu/cell) and high cell/bead loading (>400 for Cytodex-1 and >1,000 for Cultispher-G) resulted in a low virus productivity per cell. However, at low MOI (0.5 pfu/cell) the virus productivity per cell was significantly higher at high cell/bead loading in cultures of either microcarrier type. The maximum virus titre (8.5 x 10(9) pfu/mL) was obtained in Cytodex-1 cultures with a low MOI (0.5 pfu/cell) and a cell/bead loading of 1,000. The virus productivity per cell in these cultures was 4,000 pfu/cell. The lower viral yield in the Cultispher-G microcarrier cultures is attributed to a decreased accessibility of the entrapped cells to viral infection. The high viral productivity from the Vero cells in Cytodex-1 cultures suggests that this is a suitable system for the development of a vaccine production system for the Reoviridae viruses.  相似文献   

15.
Two strains of reovirus (serotype 1 Lang/TIL and serotype 3 Dearing/T3D) were propagated in Vero cells grown in stationary or agitated cultures in a serum-free medium, M-VSFM. Solid microcarriers (Cytodex-1) were used to support cell growth in agitated cultures with a normal doubling time of 25 h. Cell yields of 1 x 10(6) cells/mL were obtained from an inoculum of 2 x 10(5) cells/mL in 4 days in microcarrier cultures. The growth profile and cell yield was not significantly different from serum-supplemented cultures. The virus titer increased by 3-4 orders of magnitude over a culture period of 150 h. The maximum virus titer in stationary cultures reached >1 x 10(9) pfu/mL for both strains of reovirus in M-VSFM. M-VSFM also supported high viral yields in microcarrier cultures. Both the specific productivity and final viral yield was higher in M-VSFM than serum-supplemented cultures. The high viral productivity suggests that this is a suitable system for the production of reovirus as an oncolytic agent for human therapeutic use.  相似文献   

16.
The serum-free medium MDSS2 (Merten et al., 1994), was used for cultivating Vero cells as well as for producing poliovirus (Sabin type 1) in static and in perfused micro-carrier cultures. At slightly different growth rates of 0.0120/h and 0.0106/h, respectively, static cultures in serum-containing (SCM) and serum-free (SFM) medium produced titers of 106.75 and 106.67 TCID50 per 50 μl; signifying a specific productivity of 0.89 and 1.07 TCID50/c. Serum-free bioreactor cultures of Vero cells on DEAE-dextran microcarriers at 6.25 g/l produced cell densities of about 1.5×106c/ml. After infection with virus (multiplicity of infection (MOI) 0.1–0.3) titers of about 6.3×108 TCID50/ml were obtained, signifying an average specific productivity of 7.1 TCID50/c.h. Although these values were 4 and 2 fold, respectively, higher than in classical resum-based production processes (Montagnon et al. Dev. biol. Stand. 1981, 47, 55), a reference culture, for which cell growth was done in SCM and only virus production was done in SFM, produced 2×109 TCID/ml with an average specific virus production rate of 18.9 TCID50/c.h. The differences between the fully serum-free and our reference process were mainly due to physiological differences of cells grown in SCM and SFM and also due to strongly modified consumption kinetics after virus infection leading to limitations of one or several essential medium compounds, like glucose and amino acids. Avoiding these limitations by increasing the residual concentration of glucose, glutamine, histidine, and SH-amino acids, led to specific virus production rates (of about 17.9 TCID59/c.h.) comparable to those found in the reference virus production process. The optimisation of the production of the poliovirus (Sabin 1) will be described with respect to the modification of the medium composition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Microcarrier cell culture process can be used to culture anchorange-dependent cells in large bioreactor vessels. The process performance in large bioreactors is usually less prominent than that in spinner flask vessels and bench scale reactors. In this study we investigated the microcarrier cell culture processes in 100?ml spinner flask and 15-liter bioreactor cultures, including the kinetics for cell attachment, cell growth and the production of Japanese encephaltilis vaccine strain (Beijing-1) virus. Under a fixed concentration of microcarrier and cell density used in inoculations, the attachment kinetics of Vero cells on Cytodex 1 microcarrier in a 15-liter bioreactor vessel was 2 folds slower than with 100?ml spinner flask culture. Virus replication in 15-liter bioreactor culture also revealed an approximately one day lag-time compared to 100?ml spinner flask culture. Findings presented herein provide valuable information for designing and operating microcarrier cell culture processes in large bioreactor vessels.  相似文献   

18.
We studied BHK-21 cells growth in a 2-l bioreactor and investigated the effects of microcarrier concentration, type of growth medium, culture mode and serum concentration. The highest cell density reached was equal to 4x10(6) cells/ml and was achieved in minimum essential medium supplemented with Hanks' salts, non-essential amino acids and 5% fetal calf serum, using a perfusion culture mode and a microcarrier concentration of 4 g Cytodex 3/l. We studied rabies virus production (PV/BHK-21 strain) by BHK-21 cells grown at the optimal conditions determined previously. We analyzed the effects of multiplicity of infection (MOI) and type of medium used for virus multiplication in spinner-flasks and showed that the highest virus titer reached (when the cells were infected at a MOI of 0.3) in M199 medium supplemented with 0.2% of bovine serum albumin was equal to 8.2x10(7) Fluorescent Focus Units (FFU)/ml. When we grew the cells in a 2-l perfused bioreactor, we obtained a maximal virus titer of 3x10(8) FFU/ml. In addition, we scaled-up to a 20-l bioreactor and obtained similar results for cell density and virus titer. The experimental vaccine we developed meets WHO requirements for vaccine potency. Each run yielded about 40,000 doses of potent vaccine.  相似文献   

19.
目的应用生物反应器培养Vero细胞制备EV71病毒。方法以3 L生物反应器采用4 g/L、8 g/L Cytodex-1微载体培养比较Vero细胞比生长率,并以4 g/L微载体培养EV71病毒。结果 4 g/L微载体培养Vero细胞3~4 d微载体细胞密度达2.3×106/mL,按0.001的感染复数(MOI)接种EV71病毒,病毒收获液的滴度最高达7.90 lgPFU/mL,较静置培养平均高出0.92 lgPFU/mL。结论初步建立了3 L生物反应器微载体培养Vero细胞制备EV71病毒的工艺,为进一步放大生产规模奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号